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Abstract—Artificial Intelligence-Generated Content (AIGC)
refers to the use of Al to automate the information creation
process while fulfilling the personalized requirements of users.
However, due to the instability of AIGC models, e.g., the
stochastic nature of diffusion models, the quality and accuracy
of the generated content can vary significantly. In wireless
edge networks, the transmission of incorrectly generated content
may unnecessarily consume network resources. Thus, a dynamic
AIGC service provider (ASP) selection scheme is required to
enable users to connect to the most suited ASP, improving
the users’ satisfaction and quality of generated content. In
this article, we first review the AIGC techniques and their
applications in wireless networks. We then present the AIGC-as-
a-service (AaaS) concept and discuss the challenges in deploying
AaaS at the edge networks. Yet, it is essential to have perfor-
mance metrics to evaluate the accuracy of AIGC services. Thus,
we introduce several image-based perceived quality evaluation
metrics. Then, we propose a general and effective model to
illustrate the relationship between computational resources and
user-perceived quality evaluation metrics. To achieve efficient
AaaS and maximize the quality of generated content in wireless
edge networks, we propose a deep reinforcement learning-enabled
algorithm for the optimal ASP selection. Simulation results show
that the proposed algorithm can provide a higher quality of
generated content to users and achieve fewer crashed tasks by
comparing with four benchmarks, i.e., overloading-avoidance,
random, round-robin policies, and the upper-bound schemes.

Index Terms—Al-generated content, wireless networks, perfor-
mance metric, deep reinforcement learning.

I. INTRODUCTION

Artificial Intelligence-Generated Content (AIGC) tech-
niques have gained significant attention due to the unprece-
dented ability to automate the creation of various content [[1]],
e.g., text, images, and videos. Undoubtedly, AIGC will signif-
icantly impact daily applications, especially Metaverse. With
the ability to produce efficiently large amounts of high-
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quality content, AIGC can save time and resources that would
otherwise be spent on manual content creation.

Recent research studies demonstrate that significant
progress has been made in AIGC. Specifically, in text gen-
eration, the authors in [2] and [3|] have explored methods
for generating coherent and diverse texts using deep learning
techniques. For image generation, studies such as [4] and [5]]
have focused on generating photo-realistic images using gen-
erative adversarial networks (GANSs). In the audio generation,
the authors in [6] have explored deep learning techniques for
synthesizing high-quality speech. Furthermore, the diffusion
model brings the latest breakthrough in the AIGC area. In
2020, GPT-3 model was published by OpenAl as a multimodal
do-it-all language model that is capable of machine translation,
text generation, semantic analysis, etc [[7]. Then, the diffusion
model-based DALL-E2 released in 2022 is regarded as the
state-of-the-art image generation model which can outperform
GANSs [8].

However, AIGC models require a large amount of data for
training, and the big AIGC models are difficult to be deployed.
Taking Stable Diffusion for example, Stability AI company
maintains over 4,000 NVIDIA A100 GPU clusters and has
spent over $50 million in operating costs (https://stability.ai/).
The Stable Diffusion V1 requires 150,000 A100 GPU hours
for a single training session. Moreover, AIGC models that are
trained by different datasets are suitable for different tasks. For
example, the AIGC model trained by the human face dataset
can be used to repair corrupted face images, but may not be
effective in correcting blurred landscape images. Due to the
diversity of users’ tasks and the limited edge device capacities,
it is difficult to deploy multiple AIGC models on every
network edge device. To further increase the availability of the
AIGC services, one promising deployment scheme is based on
“Everything-as-a-service” (EaaS), which can effectively pro-
vide users with subscription-based services. By embracing the
EaaS deployment scheme, we present the concept of “AIGC-
as-a-service” (AaaS). Specifically, AIGC service providers
(ASPs) can deploy Al models on edge servers to deliver
instant services to users over wireless networks, offering
a more convenient and customizable experience. Users can
easily access and enjoy AIGC with low latency and resource
consumption. There are several advantages of deploying AaaS
in edge networks:

Al) Personalization: AIGC models can be used to generate
content tailored to each user’s requirements, providing
a personalized and engaging experience. For example,
personalized product recommendations can be offered



to users based on their locations, preferences, and usage
patterns.

Efficiency: By deploying AIGC services closer to users,
quality of services (QoS) will be improved significantly,
e.g., lower delay, while network and computing re-
sources can be utilized more efficiently due to local
content transfer.

Flexibility: AIGC can be customized and optimized to
meet dynamic demands and resource availability. By
scheduling wireless network users’ access for AIGC
service providers, the overall QoS for users in the
network can be maximized.

A2)

A3)

Therefore, edge-based AaaS has the potential to revolutionize
the way that content is created and delivered over wireless
networks. However, the current research on AIGC focuses
mainly on AIGC model training while ignoring the resource
allocation issues when deploying AIGC in wireless edge net-
works. Specifically, AIGC may require significant bandwidth
and computation power to generate and deliver content to
users, which could lead to degraded network performance.
Furthermore, scaling AaaS to meet the needs of a large number
of users can be challenging. Thus, assigning suitable ASPs to
users is critical. On the one hand, users pursue their goals of
being served by the ASPs with the best performance. On the
other hand, it is important to avoid overloading certain AIGC
services and requiring re-transmissions, SO as to consume
scarce network resources. To the best of our knowledge,
this is the first research work to discuss the deployments,
aforementioned challenges, and future directions of AIGC in
wireless edge networks. Our contributions can be summarized
as follows:

e We provide a comprehensive overview of the AIGC and
techniques behind it. Then, we discuss various appli-
cations of AIGC and their use cases in wireless edge
networks and their deployment challenges.

« We review the existing image-based perceived quality
metrics. By conducting real experiments, we propose a
general model to reveal the relationship between compu-
tational resource consumption and the quality of gener-
ated content in AaaS.

« We propose a deep reinforcement learning (DRL)-enabled
method to achieve a dynamic selection of optimal ASPs.
We demonstrate the superiority of our proposed DRL-
enabled algorithm compared with four solutions, includ-
ing upper-bound, overloading-avoidance, random, and
round-robin policies.

II. AI-GENERATED CONTENT AND TECHNIQUES

In this section, we review the recent progress of AIGC.
Specifically, we introduce the technologies behind the AIGC.
Then, we discuss several categories of AIGC and associated
applications in edge networks.

A. Generative Techniques

We introduce generative techniques in training AIGC mod-
els [9]. The basic model structures are shown on the left of

Fig. [1]

o Autoregressive Models (ARMs): ARMs belong to statis-
tical modeling that involves predicting the future values
of a time series based on past values [9]. ARMs can
generate text or other media types for content generation
by predicting the next element based on the previous
ones. A potential use case for ARMs is to generate music
by predicting the next note in a musical sequence based
on the previous notes from edge users.

o Variational Autoencoders (VAEs): VAEs can generate
new data by learning a compact, latent representation
of the input data, consisting of an encoder network and
a decoder network [9]. The encoder network processes
the input data and outputs a latent representation. The
decoder network takes this latent representation as input
and generates synthetic data similar to the input data.

o Generative Adversarial Networks (GANs): GANs con-
sist of two neural networks, i.e., generator and discrimi-
nator networks [4]]. The two networks are trained together
to improve the generator’s ability to generate realistic
images and the discriminator’s ability to distinguish syn-
thetic images from real images.

o Flow-based Models (FBMs): FBMs transform a simple
distribution into a target distribution through a series
of invertible transformations [9]]. These transformations
are implemented as neural networks, and the process of
applying the transformations is referred to as “flow”.

o Diffusion Models (DMs): DMs are trained to denoise
images blurred by Gaussian noise to learn how to reverse
the diffusion process [8]. Several diffusion-based gen-
erative models have been proposed, including diffusion
probabilistic models, noise-conditioned score networks,
and denoising diffusion probabilistic models.

Moreover, classic techniques such as Transformer can also
be used to train AIGC models, which are discussed in the
following.

B. Categories of AIGC and Applications in Mobile Networks

We then present several categories of AIGC technologies
and their applications in edge networks, which can serve as
potential future research directions.

1) Text-to-Text AIGC: Text-to-text AIGC can generate the
human-like message as an output based on a given text input.
Therefore, it can be used for automatic answers, language
translation, or article summarization. One representative text-
to-text AIGC model is the Generative Pre-training Transformer
(GPT) (https://openai.com/blog/chatgpt/), a language model
developed by OpenAl [7]. The GPT is trained on a large
dataset of human-generated text, such as books or articles.
The model can then create text by predicting the next word in
a sequence based on the words that come before it. GPT has
been highly successful and has achieved state-of-the-art results
on several natural language processing (NLP) benchmarks.
GPT can be used to build many popular language-based
services. In wireless edge networks, as shown in Fig. |I} GPT
can serve as a chatbot that provides drivers with navigation
and information alert services.
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Generative techniques in AIGC [9], categories of AIGC, and applications in wireless edge networks. We list several online available AIGC

services as examples, e.g., ChatGPT for text-to-text AIGC (https://openai.com/blog/chatgpt/), Imagen for text-to-image AIGC (https://imagen.research.google/),
DreamFusion for text-to-3D AIGC (https://dreamfusion3d.github.io/), Crypko for image-to-image AIGC (https://crypko.ai/), and Human Voice Generator for

audio-related AIGC (https://murf.ai/).

2) Text-to-Image AIGC: Text-to-image AIGC allows users
to generate images based on text input, enabling the creation
of visual content from written descriptions. It can be regarded
as a combination of natural language processing and computer
vision techniques. As shown in Fig.[T] the text-to-image AIGC
can assist mobile users with various activities. For example,
users in Internet-of-Vehicles can request visual-based path
planning. Furthermore, text-to-image AIGC can also assist
users in creating art and producing pictures in various styles
based on users’ descriptions or keywords.

3) Text-to-3D AIGC: Text-to-3D AIGC can generate 3D
models from text descriptions while using wireless AR appli-
cations. Typically, generating 3D models requires higher com-
putational resources than generating 2D images. Considering
the development of next-generation Internet services, such as
Metaverse [10], generating 3D models based on text without
complicated manual design is fascinating.

4) Image-to-Image AIGC: Image-to-Image AIGC uses Al
models to generate realistic images from source images or
create a stylized version of an input image. For example, when
it comes to assisting artwork creation, image-to-image AIGC
can generate visually satisfying pictures based solely on user-
inputted sketches. Furthermore, image-to-image AIGC can be
used for image editing services. Users can remove occlusions
in one image or repair corrupted images.

5) Audio-related AIGC: Audio-related AIGC models ana-
lyze, classify, and manipulate audio signals, including speech
and music. Specifically, text-to-speech models are designed
to synthesize natural-sounding speech from text input. Music
generation models can synthesize music in a variety of styles
and genres. Audio-visual music generation involves using
both audio and visual information, such as music videos or
album artwork, to generate music compositions that are more
closely tied to a particular visual style or theme. Moreover,
audio-related AIGC can serve as voice assistants that an-
swer users’ queries. Alexa (https://developer.amazon.com/en-
US/alexa) and Siri (https://www.apple.com/sg/siri/) are exam-
ples of real-life applications.

Given the power of AIGC models, there are several chal-
lenges in deploying AaaS in wireless edge networks, which
are introduced in the following.

III. AI-GENERATED CONTENT-AS-A-SERVICE IN
WIRELESS EDGE NETWORKS

In this section, we discuss the AaaS in detail, including the
challenges and performance metrics.

A. Al-Generated Content-as-a-Service and Challenges

To deploy AaaS in wireless edge networks, the ASPs should
first train AIGC models on large datasets. The AIGC models



would need to be hosted on edge servers and can be accessed
by users. Continuous maintenance and updates would be
required to ensure that the AIGC models remain accurate and
effective for generating high-quality content. Users can submit
requests for content generation and receive the generated
content from edge servers rented by ASPs. Despite several
advantages of deploying AaaS in wireless edge networks, there
are pertaining challenges to be addressed.

o Bandwidth Consumption: The AIGC consumes a sig-
nificant amount of bandwidth. Especially for AaaS
related to high-resolution images, both upload and
download processes require considerable network re-
sources to ensure low-latency services. For example,
the data size of an Al-generated wallpaper in wall-
haven (https://wallhaven.cc/tag/133451) can be around
10 Megabytes. Furthermore, due to the diversity of the
generated images, users may make multiple repeated
requests to specific edge servers to obtain a satisfactory
image.

o Time-varying Channel Quality: The QoS in AaaS can
be affected by the wireless transmission of the generated
content. Low Signal-to-Noise Ratio (SNR), low Outage
Probability (OP), and high bit-error probability (BEP) can
degrade QoS of AIGC services and users’ satisfaction,
which results from time-varying fading channels when
the channel encounters deep fading occasionally.

« Dataset used for training AIGC Models: The dataset
used for training AIGC models can impact the quality of
the generated content. Since different ASPs have various
AIGC models, users can be allocated to the suitable ASP
to meet their requirements. For example, AIGC models
trained with more face images will be more suitable for
generating avatars than those trained with other datasets.

o Computation Resource Consumption: The well-trained
AIGC model still consumes time and computational re-
sources when generating content, e.g., fine-tuning and
inference. For example, the quality of the output of
the diffusion model-AaaS increases with the number of
inference steps.

« Utility Maximization and Incentive Mechanism: In-
centive mechanism design is significant in AaaS as it can
motivate ASPs to generate high quality content, meeting
the desired goals and objectives. Here, the utility function
should include the perceived QoS from users.

A common issue in addressing the above challenges is eval-
uating AIGC performance. Although many evaluation metrics
in various modalities have been proposed, most of them are
based on Al models or are difficult to be calculated, without
a mathematical expression. For the optimal design of AaaS
in wireless networks, Al-based resource allocation solutions
can utilize Al-based performance metrics to consider the sub-
jective feelings of the user. However, traditional mathematical
resource allocation schemes require modeling the relationship
between the computational resources consumption, e.g., the
number of inference steps in the diffusion model, and the
quality of the generated content, as shown in Fig. To
solve this problem, taking image-related AaaS as an example,

we introduce various performance evaluation metrics and
explore the mathematical relationship between metric values
and computational resource consumption in the following.

B. Performance Metric Modelling

We first discuss AIGC evaluation metrics. We focus on
evaluating the perceived quality of images, but the same
methodology can be applied to other types of content. Then,
we formulate the relationship between computational resource
consumption and the quality of generated content in AaaS.

1) Image-based metrics: The image quality assess-
ment metrics can be distribution-based and image-based.
The distribution-based metrics, e.g., Frechet inception dis-
tance [[11], take a list of image features to compute the dis-
tance between distributions for evaluating generated images.
However, for practical AaaS in the wireless network, the
quality evaluation is subjective, and it is hard for users to
calculate distribution-based metrics. Thus, we focus on image-
based metrics that attempt to achieve consistency in quality
prediction by modeling salient physiological and psycho-
visual features of the human visual system or by signal fidelity
measures.

Specifically, without access to the original image as a
reference, no-reference image quality evaluation methods can
be considered [[11]:

o Total Variation (TV): TV is a measure of the smooth-
ness of an image. One common way to compute total
variation is to take the sum of the absolute differences
between adjacent samples in an image. This measures
the “roughness” or “discontinuity” of the image.

« Blind/Referenceless Image Spatial Quality Evalua-
tor (BRISQUEﬂ BRISQUE utilizes scene statistics of
locally normalized luminance coefficients to quantify
possible losses of “naturalness” in the image due to dis-
tortions [[12]. It has been shown that BRISQUE performs
well in correlation with human perception of quality.

The higher the image quality, the smaller the values of TV
and BRISQUE.

For AaaS where a reference image is available, we can use

full-reference image quality evaluation methods [11]:

o Discrete Cosine Transform Subbands Similarity
(DSS): DSS exploits essential characteristics of human
visual perception by measuring changes in structural
information in subbands in the discrete cosine transform
(DCT) domain and weighting the quality estimates for
these subbands [|13]].

« Haar Wavelet-based Perceptual Similarity Index
(HaarPSI): HaarPSI utilizes the coefficients obtained
from a Haar wavelet decomposition to assess local sim-
ilarities between two images, as well as the relative
importance of image areas.

e Mean Deviation Similarity Index (MDSI): MDSI is a
reliable and complete reference perceptual image quality
assessment model that utilizes gradient similarity, chro-
maticity similarity, and deviation pooling.

Uhttp://live.ece.utexas.edu/research/quality/
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Fig. 2. Example of an AaaS for repairing corrupted images. The corrupted images are shown in Part A, and the repaired images under different inference
steps are shown in Part D. Part B shows how the performance metric, BRISQUE, varies over different inference steps. Part C shows the system model of

ASP selection problem. A experiment demo is shown in Part E.

« Visual Information Fidelity (VIF): VIF is a competitive
way of measuring fidelity that relates well with visual
quality, which quantifies the information in the reference
image and how much of the reference information can be
extracted from the distorted image.

The higher the image quality, the higher the values of the
aforementioned full-reference image quality metrics.

2) A General Modelling of Perceived Image Quality Metric:
AIGC models based on diffusion models are becoming main-
stream. As shown in the left of Fig.[T] the diffusion process can
be regarded as a step-wise denoising process. Thus, increasing
the number of inference steps will improve the perceived
image quality. However, the generated image quality does not
always increase with the number of steps. Excessive inference
steps incur unnecessary resource consumption. We conduct
real experiments to investigate the relationship between the
number of inference steps and various perceived image quality
metrics, i.e., TV, BRISQUE, DSS, HaarPSI, MDSI, and VIF.

The experimental platform is built on a generic Ubuntu
20.04 system with an AMD Ryzen Threadripper PRO
3975WX 32-Cores CPU and an NVIDIA RTX A5000 GPU.
We take diffusion model-based corrupted image restoration
service as an example of AaaS. Specifically, we deploy the
well-trained model, RePaint, proposed in on our Server.
As shown in Fig. [2] (Part A), we first generate a series of
corrupted images, e.g., 20 images, with the help of masks.
Then, these corrupted images are fed into RePaint. We can
observe that the corrupted image gradually recovers as the
inference progresses, as shown in Fig. |Z| (Part D). Moreover,
the values of image quality metric, e.g., BRISQUE, decrease,
as shown in Fig. [2] (Part B). We show the values of each

performance metric under the different number of timesteps
in Fig. [3|

Thus, we present a general model of the perceived image
quality metric that contains four parameters, as shown at the
top of Fig. 3] Specifically, A, is the minimum number of
inference steps where the image quality starts to improve,
A,y is the lower bound of the image quality, which can be
regarded as the evaluation value for images with high noise,
B, is the number of inference steps when the image quality
starts to stabilise because of the capability of AIGC models,
and B, is the highest image quality value that the model can
achieve. Regardless of whether the performance metric value is
positively or inversely proportional to the image quality, and
regardless of the AaaS types, we can easily find the points
(Az, Ay) and (B, By) experimentally, as shown in Fig.

Lesson Learned: Despite the inherent uncertainty of the
diffusion process, from Fig. |3| we can observe that the per-
ceived image quality increases or decreases approximately
proportionally with the increase of inference steps. In the
practical AIGC model analysis, we can perform experiments
with the simple fitting method as shown in Fig. [3] to a
performance metric to obtain four parameters in our proposed
general mathematical model. Then, the model can be used in
wireless edge network-enabled AIGC services analysis.

IV. DEEP REINFORCEMENT LEARNING-AIDED DYNAMIC
ASP SELECTION

In this section, we study the optimal ASP edge server
selection problem. We propose a DRL-enabled solution to
maximize utility function while satisfying users’ requirements.
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Fig. 3. The relationship between the number of inference steps and various perceived image quality metrics, i.e., TV, BRISQUE, DSS, HaarPSI, MDSI, and

VIF.

A. AaaS System Model

Our demo is shown in Fig. 2] (Part E). Specifically, three
users are selecting between two image reparation AIGC mod-
els that are trained on datasets CelebA-HQ and Places2 [14],
respectively. User 1 and User 2 upload the same corrupted
images. We can observe that different AIGC models will create
different results for the same user task.

Then, we study the case for large-scale deployment of AaaS
in wireless edge networks. We consider 20 AIGC service
providers (ASPs) and 1000 edge users in the simulation.
Each ASP provides AaaS with maximal resource capacity, i.e.,
total diffusion timesteps within a time window, ranging from
600 to 1500 at random. Each user submits multiple AIGC
task requests to ASPs at different times. These tasks specify
the amount of AIGC resources that they need, i.e., diffusion
timesteps, which we set as a random value between 100 and
250. The user task arrivals follow the Poisson distribution.
Specifically, during a period of 288 hours, user tasks arrive
at the rate of A = 0.288 hour/request and there are a total of
1000 tasks. Note that the quality of AIGC models provided
by different ASPs is different, e.g., the repaired images could
be more realistic and natural.

A simple, yet less effective ASP selection, is that the user
sends the task request directly to the ASP with the best quality
of generated content. However, this approach will inevitably
overload some ASPs due to insufficient computational re-
sources and interrupting tasks in practice. In addition, the qual-
ity of generated content of ASPs is unknown to users. Mobile
users need to ask ASPs several times to estimate the quality
of generated content to execute myopic selection, which
introduces unnecessary load and wireless network resource
consumption. To this end, under the premise of the unknown
quality of generated content, how to choose a suitable ASP for

user tasks to maximize the overall system’s utility and reduce
AIGC resource overload and interruption caused by popular
ASPs, is a challenging yet important problem.

B. Deep Reinforcement Learning-based Solution
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Fig. 4. The structure of soft actor—critic DRL algorithm.

We use the soft actor—critic (SAC) DRL [15] to solve
the above dynamic ASP selection problem. As shown in
Fig. @] the learning process alternates between policy eval-
vation (Critic) and policy improvement (Actor). Unlike the
conventional actor-critic architecture, the policy in SAC is
trained to maximize a trade-off between the expected return
and entropy. The state space, action space, and reward in the
AaaS environment are defined as follows:

o State: The state space is composed of two parts: (a) a
feature vector (the demand of AIGC resources for current
user task and the estimated completion time of the task)



of the arriving user task, and (b) feature vectors (the
total AIGC resources of the i-th ASP and the currently
available resources of the i-th ASP) of all ASPs in the
current state.

o Action. The action space of the ASP selection problem
is an integer indicating the selected ASP. In detail, the
actor policy network outputs a 20-dimensional logits
vector, and then the probability of selecting each ASP
is obtained after being post-processed by the softmax
operator. Finally, DRL selects an ASP to handle the
current user task according to the assigned probability
of each ASP.

o Reward. The reward consists of two parts: a quality of
generated content reward and an congestion penalty. The
former is defined as the perceived quality of the repaired
image, as discussed in Section @ Furthermore, any
action that overloads AIGC models must be penalized as
an congestion penalty. First, the action itself should be
punished with fixed penalty value. Second, considering
that ill-considered actions can cause bottleneck ASP’s
model to crash and the running tasks will be interrupted,
the current action will also be subject to additional
penalties according to the progress of ongoing tasks. The
total reward returned is the quality reward minus the
congestion penalty. Note that a larger penalty value will
encourage DRL to pay more attention to avoid crashes.

We compare the performance of the DRL-enabled ASP
selection algorithm with four benchmarks. The lower bound
is the random allocation policy, assigning every new user task
to an ASP randomly. In contrast, the optimal policy gives
an approximate upper-bound on the performance, assuming
that the quality scores available for each task on all ASPs
are known (which is a posterior knowledge and is rarely
satisfied in practice). The upper-bound policy can use the
greedy algorithm to allocate a new user task to the ASP with
enough AIGC resources and the highest quality. Furthermore,
we implement the round-robin and overloading-avoidance
policies, which are widely adopted in web applications to
realize load balancing. It is simple, easy to implement, and
starvation-free. The overloading-avoidance policy assigns the
new user task to the ASP with most AIGC resources currently
available to prevent or reduce the severity of overloads and
crashes.

Figure |§| shows the utility curves (i.e., reward curves) of the
DRL-enabled ASP selection policy and the four benchmark
policies. Since DRL can learn and evolve, as the learning
step progresses, DRL has a more comprehensive and accurate
selection of the ASP. Thus the utility rises rapidly, showing
unique learning ability. One interesting finding is that when
DRL overtakes the round-robin, DRL already has a specific
load-balancing capability. Immediately afterward, DRL sur-
passes overloading-avoidance. At this time, DRL has learned
to avoid actions that may cause crashes, thereby avoiding the
congestion penalty. Then, DRL starts to learn the priority of
different ASPs, and it seeks to place the current user task on
the ASP with high quality to maximize the reward. Therefore,
as shown in Fig.[5] DRL still has much room for improvement
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Fig. 5. Reward values versus the number of iteration number in DRL.

For performance comparison, we show the results of overloading-avoidance,
random, round-robin policies, and their upper bound.
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Fig. 6. Comparison of episodic rewards, average rewards of finished tasks,
and number of crashed tasks.

after surpassing the overloading-avoidance policy and finally
reaching an episodic reward comparable to the upper-bound
policy.

Figure [6] counts the episodic rewards, the average rewards
of finished tasks, and the number of crashed tasks of the five
policies. On the one hand, the DRL-enabled ASP selection
policy achieves zero task crashes and minimizes the congestion
penalty, which is critical to providing a satisfying quality of
generated content to users. On the other hand, DRL policy can
learn the quality of content that ASPs may provide, which is
unknown in other policies. Then, DRL can assign user tasks
to ASPs that can provide higher QoS so that the average
reward for each task is effectively increased. The combination
of the above two advantages makes a much higher cumulative
episodic reward for the DRL-enable ASP selection policy.

V. FUTURE DIRECTION
A. Secure AIGC-as-a-Service

When deploying AaaS in a wireless network, the requests
from users and the generated contents from ASPs are trans-
mitted in a wireless environment. Therefore, advanced security



techniques for AIGC need to be studied, e.g., protecting the
transmission of AIGC data through improved physical layer
security techniques. Moreover, blockchain can be used to
enable decentralized content distribution, allowing content to
be shared and accessed directly between users without the
need for a central authority. The authenticity and provenance
of AIGC can be verified with the aid of blockchain, helping to
ensure that the AIGC is accurate and trustworthy. Furthermore,
during the training process of AIGC models, the privacy of
the training data needs to be guaranteed, especially biometric
data, such as face images. One possible solution is to train the
model by secure federated learning.

B. IoT-based and Wireless Sensing-aided Passive AaaS

Considering the fast development of sensing technologies,
we aim to enable ubiquitous passive AaaS with wireless
sensing signals. For example, wireless sensors can gather data
about the environment or user behavior, which can then be fed
into an AIGC model to generate relevant content. Wireless
sensing-aided passive AaaS can also be used in healthcare.
Specifically, by using IoT devices to detect users’ activity
levels, sleep patterns, or heart rates with the aid of wireless
sensing, the AIGC could generate content such as personalized
workout plans. Moreover, the mobility of network devices
predominantly affects the throughput of the connected links
for AaaS, which is worth further study.

C. Personalized Resource Allocation in AaaS

Although the current AIGC models can meet users’ needs
with customized tasks, more studies are needed to achieve
personalized AIGC services. For example, for text-to-image
AaaS, when both users enter the text “A monkey is standing
next to a zebra”, current ASPs will produce similar images for
users. However, if we deduce that the two users are a horse
trainer and a monkey researcher, respectively, we can per-
sonalize the computing resource allocation [10]]. Specifically,
more computing resources should be allocated to generate
and transmit the zebra in the image for the horse trainer.
For the monkey researcher, the AIGC model that is more
adapted to generating monkey images should be assigned to
handle the task. One potential solution is incorporating user
feedback and preferences into the content generation process
and developing techniques for evaluating the effectiveness of
personalized content.

VI. CONCLUSION

In this article, we reviewed the AIGC technologies and
discussed the applications in wireless networks. To provide

AIGC services to users, we proposed the concept of AaaS.
Then, the challenges of deploying AaaS in wireless networks
are discussed. In addressing these challenges, a fundamental
problem is about the mathematical relationship between the
resource consumption and the perceived quality of the gener-
ated content. After exploring various image-based performance
evaluation metrics, we proposed a general modeling equation.
Moreover, we studied the important ASP selection problem.
A DRL-enabled algorithm was used to achieve nearly optimal
ASP selection. As the first article to discuss AIGC in wireless
networks, we hope that this article can inspire researchers
to contribute to the advancement of wireless edge networks-
enabled AaaS.

REFERENCES

[1]1 L. Yunjiu, W. Wei, and Y. Zheng, “Artificial intelligence-generated and
human expert-designed vocabulary tests: A comparative study,” SAGE
Open, vol. 12, no. 1, Jan. 2022.

[2] M. Chen, A. Radford, R. Child, J. Wu, H. Jun, D. Luan, and I. Sutskever,
“Generative pretraining from pixels,” in Proc. Int. Conf. Mach. Learn.
PMLR, 2020, pp. 1691-1703.

[3] J. Guo, S. Lu, H. Cai, W. Zhang, Y. Yu, and J. Wang, “Long text
generation via adversarial training with leaked information,” in Proc.
AAAI Conf. Artif. Intell., vol. 32, no. 1, 2018.

[4] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
gans for improved quality, stability, and variation,” in Proc. Int. Conf.
Mach. Learn., 2018.

[5] X. Huang, M.-Y. Liu, S. Belongie, and J. Kautz, “Multimodal unsu-
pervised image-to-image translation,” in Proc. Eur. Conf. Comput. Vis.,
2018, pp. 172-189.

[6] W. Ping, K. Peng, K. Zhao, and Z. Song, “WaveFlow: A compact flow-
based model for raw audio,” in Proc. Int. Conf. Mach. Learn. PMLR,
2020, pp. 7706-7716.

[71 L. Floridi and M. Chiriatti, “GPT-3: Its nature, scope, limits, and
consequences,” Minds Mach., vol. 30, no. 4, pp. 681-694, Apr. 2020.

[8] P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image
synthesis,” Adv. Neural Inf. Process. Syst., vol. 34, pp. 8780-8794, 2021.

[9]1 G. Harshvardhan, M. K. Gourisaria, M. Pandey, and S. S. Rautaray,

“A comprehensive survey and analysis of generative models in machine

learning,” Comput. Sci. Rev., vol. 38, p. 100285, 2020.

H. Du, J. Liu, D. Niyato, J. Kang, Z. Xiong, J. Zhang, and D. 1. Kim,

“Attention-aware resource allocation and QoE analysis for metaverse

xURLLC services,” arXiv preprint arXiv:2208.05438, 2022.

S. Kastryulin, D. Zakirov, and D. Prokopenko, “PyTorch Image Quality:

Metrics and measure for image quality assessment,” 2019, open-

source software available at https://github.com/photosynthesis-team/piq.

[Online]. Available: https://github.com/photosynthesis-team/piq

A. Mittal, A. K. Moorthy, and A. C. Bovik, “No-reference image quality

assessment in the spatial domain,” IEEE Trans. Image Process., vol. 21,

no. 12, pp. 4695-4708, Dec. 2012.

L. Gatys, A. Ecker, and M. Bethge, “A neural algorithm of artistic style,”

J. Vis., vol. 16, no. 12, pp. 326-326, Dec. 2016.

A. Lugmayr, M. Danelljan, A. Romero, F. Yu, R. Timofte, and

L. Van Gool, “Repaint: Inpainting using denoising diffusion probabilistic

models,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2022, pp.

11461-11471.

P. Christodoulou, “Soft actor-critic for discrete action settings,” arXiv

preprint arXiv:1910.07207, 2019.

[10]

(1]

[12]

[13]

[14]

[15]


https://github.com/photosynthesis-team/piq

	I Introduction
	II AI-Generated Content and Techniques
	II-A Generative Techniques
	II-B Categories of AIGC and Applications in Mobile Networks
	II-B1 Text-to-Text AIGC
	II-B2 Text-to-Image AIGC
	II-B3 Text-to-3D AIGC
	II-B4 Image-to-Image AIGC
	II-B5 Audio-related AIGC


	III AI-Generated Content-as-a-Service in Wireless Edge Networks
	III-A AI-Generated Content-as-a-Service and Challenges
	III-B Performance Metric Modelling
	III-B1 Image-based metrics
	III-B2 A General Modelling of Perceived Image Quality Metric


	IV Deep Reinforcement Learning-aided Dynamic ASP Selection
	IV-A AaaS System Model
	IV-B Deep Reinforcement Learning-based Solution

	V Future Direction
	V-A Secure AIGC-as-a-Service
	V-B IoT-based and Wireless Sensing-aided Passive AaaS
	V-C Personalized Resource Allocation in AaaS

	VI Conclusion
	References

