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Abstract—Joint radar and communication (JRC) is a promising technique for spectrum re-utilization, which enables radar sensing and

data transmission to operate on the same frequencies and the same devices. However, due to the multi-objective property of JRC

systems, channel allocation to JRC nodes should be carefully designed to maximize system performance. Additionally, because of the

broadcast nature of wireless signals, a watchful adversary, i.e., a warden, can detect ongoing transmissions and attack the system.

Thus, we develop a covert JRC system that minimizes the detection probability by wardens, in which friendly jammers are deployed to

improve the covertness of the JRC nodes during radar sensing and data transmission operations. Furthermore, we propose a robust

multi-item auction design for channel allocation for such a JRC system that considers the uncertainty in bids. The proposed auction

mechanism achieves the properties of truthfulness, individual rationality, budget feasibility, and computational efficiency. The

simulations clearly show the benefits of our design to support covert JRC systems and to provide incentive to the JRC nodes in

obtaining spectrum, in which the auction-based channel allocation mechanism is robust against perturbations in the bids, which is

highly effective for JRC nodes working in uncertain environments.

Index Terms—Robust optimization, multi-item auction, joint radar and communication, friendly jammers, covert communication.
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1 INTRODUCTION

W ITH the growing number of mobile users in cellular
networks and given the limited available bandwidth,

several approaches have been proposed at different levels
of the network design to accommodate these users and
efficiently allocate the spectrum. In addition, different tech-
nologies are being integrated into these network devices to
perform a variety of tasks such as communication, radar
sensing, and power transfer [1], [2]. This allows efficient
spectrum re-utilization and minimizes hardware costs. Re-
cently, spectrum sharing between radar and communication
systems has led to the emergence of joint radar and com-
munication (JRC) systems [1]. In JRC systems, simultaneous
radar sensing and data transmission can be performed by
the same device on the same frequency. However, JRC sys-
tems are vulnerable to jamming and eavesdropping attacks,
and only a few works address this issue.

In our previous work [2], we have developed a frame-
work for JRC systems that enables continuous operation
of the system under jamming attacks. We developed an
intelligent deception strategy based on ambient backscatter
communication and deep reinforcement learning. However,
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the proposed model faces some scalability issues. First, if
the network has multiple JRC nodes that are communicating
with a receiver, it becomes harder for the receiver to decode
the modulated ambient backscatter signals. Second, a war-
den can still detect ongoing radar sensing signals and knows
exactly which JRC node is trying to sense the environment,
hence making the JRC node potentially vulnerable to at-
tackers. The warden can eavesdrop the transmitted signals
(communication signals and radar signals) to infer sensi-
tive information about the users. Therefore, minimizing the
detection probability by a warden is crucial for preventing
such attacks as the warden will be unable to distinguish
between noise and real ongoing transmission and sensing
activities. As such, hiding the transmitted signals can both
minimize the leakage of sensitive information and prevent
jamming attacks from occurrence.

Recently, covert communication has been proposed as an
effective solution to hide the ongoing signal transmission
from discovery by a third party [3], [4]. Specifically, the
idea consists of deploying friendly jammers to transmit fake
signals to disturb the warden about the ongoing transmis-
sion. Since the warden has a predefined energy threshold
to detect ongoing communication, the addition of jamming
signals will increase the false alarm and misdetection prob-
abilities at the warden. As a result, the warden is forced
to increase its detection threshold and allows the legitimate
transmitter to transmit silently and covertly thanks to the
jamming signals.

Since the covert communication technique can be appli-
cable and compatible with any wireless systems without
changing the system operation, it is a low-cost and effi-
cient solution, for example, compared with the frequency
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hopping (FH) technique which requires the transmitters
and receivers to switch among subcarriers frequently. As
such, the FH technique increases the complexity to the
circuit design and requires a sophisticated synchronization
method. Moreover, the warden could scan a wide range
of frequencies, overcoming the FH technique. Therefore,
covert communications can avoid other external attacks as
the transmission is hidden. With a variety of modulation
schemes developed for JRC systems such as orthogonal
frequency division multiplexing (OFDM) [5], [6], the idea
of covert communication can be extended to enable covert
radar sensing and hence, a covert JRC system. However,
radio resource management issues arise when there are mul-
tiple JRC nodes in the network. Specifically, these JRC nodes
can have different spectrum requirements to achieve their
targeted data rates and sensing operations. The JRC nodes
need to carefully design their valuation functions based
on their private information, e.g., channel state information
(CSI) and importance of radar sensing over communication
and vice-versa, to ensure that the obtained spectrum from
the SSP is worth its price, i.e., positive utility.

Even though several works have studied at the signal
processing level a coexistence of radar sensing and data
transmission on the same waves and/or on the same de-
vices [1], optimal channel allocation for JRC nodes has
received far less attention. In particular, a major part of
existing works focused on finding the optimal schedul-
ing and modulation scheme for radar and communication
signals, see for example the comprehensive review in [7].
However, fewer works addressed the problem of allocating
the available bandwidth to the JRC nodes so that the utilities
of both the SSP and the JRC nodes are maximized [8]. With
the significant changes at the lower layers of the network to
accommodate JRC systems, and due to their multi-objective
nature, deriving an optimal channel allocation strategy by
the spectrum service provider (SSP) to the JRC nodes be-
comes more complex and a significant problem of interest.
In addition, when demands from the JRC nodes exceed the
available spectrum, the SSP needs to strategically allocate
the available channels to maximize its revenue.

Several auction mechanisms have been developed to
address the problem of overloaded requests for the limited
bandwidth in wireless networks [9], [10], [11]. Auction
mechanisms are efficient tools to allocate the channels to
the users that value them the most. In such mechanisms,
the objective can be to maximize the social welfare of the
system which is defined as the sum of all users’ utilities.
For instance, the authors in [8] designed a simple VCG-like
auction mechanism for channel allocation for JRC nodes.
However, traditional auction mechanisms do not consider
the uncertainty of the submitted bids of the wireless nodes
which can make the derived optimal auction solution in-
feasible in practice [12]. Here, the bids are derived from
the values of channels perceived by the wireless nodes that
depend on each device’s detection sensitivity and capability.
For instance, when a JRC node calculates the valuation of
each channel to derive the bids, it can incorporate some
uncertain parameters, e.g., the location of the warden or the
channel gain, and therefore its realized utility can be less
than expected. Furthermore, the utilities of some users can
become negative and according to prospect theory, users’

response to losses is much stronger than that to the corre-
sponding gains [13]. Therefore, a mechanism that considers
the uncertainty in bids is needed when deriving the optimal
auction solution.

Motivated by the above mentioned issues, in this pa-
per, we develop a robust and efficient multi-item auction
mechanism for channel allocation in covert JRC systems
under uncertainty of bids. The objective is to develop
a risk-averse algorithm for channel allocation that maxi-
mizes the social welfare of the system under uncertainty
of JRC nodes’ valuations. Different from the traditional
Vickrey–Clarke–Groves (VCG) mechanism in which the auc-
tioneer is risk-neutral, in the proposed robust auction mech-
anism, the auctioneer is risk-averse, i.e., the auctioneer ac-
cepts to obtain a lower revenue but with higher confidence,
which is practical for several safety critical applications.
To the best of our knowledge, this is the first work that
considers the problem of robust channel allocation for covert
JRC systems.

The main contributions of our work are as follows:

1) We design a novel covert JRC system in which friendly
jammers are deployed to transmit artificial noise and
prevent wardens from detecting ongoing transmissions
of the JRC nodes. The proposed design is shown to
enable the JRC nodes to perform covertly their radar
sensing and data transmission operations with low
detection probability.

2) As the task of designing a reliable channel allocation
system by the SSP remains challenging, i.e., immune
against uncertainty, we develop a robust multi-item
auction mechanism to allocate the channels to the JRC
nodes. Unlike previous works on covert communica-
tion, we consider the uncertainty about the warden,
such as its location, in the design of the auction mecha-
nism and show how the auction outcomes are affected
by the uncertainty range of the warden.

3) The proposed auction based-model guarantees the
properties of individual rationality (IR), incentive com-
patibility (IC), and budget feasibility (BF). This makes
the system resilient both against intentional market ma-
nipulation attacks and perturbations in the submitted
spectrum bids.

4) We conduct extensive simulations to validate the pro-
posed covert JRC system and derive important prop-
erties about the proposed robust auction mechanism
compared to deterministic auction mechanisms over
different scenarios. The JRC nodes are able to covertly
perform their radar sensing and data transmission op-
erations while the SSP is able to derive an optimal
allocation strategy that reflects its risk-aversion.

The rest of the paper is organized as follows. Section
II reviews related works. Section III and IV describe our
system model and the proposed robust auction mechanism,
respectively. The evaluation results are then presented in
section V. Section VI concludes the paper.

2 RELATED WORKS

Since our work is a novel design that incorporates several
techniques, we review related works which study the prob-
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lem of spectrum allocation in JRC systems, covert commu-
nication and robust optimization in wireless networks.

2.1 Covert Communication

Different from upper-layer security techniques that try to
protect the content from being intercepted by a third party,
covert communication has the goal of hiding the ongoing
communication itself from wardens. In [3], covert commu-
nication was first addressed from an information theory
perspective where a square root limit on the number of
covertly transmitted bits was derived. In [14], a zero-sum
game was formulated between the transmitter and the jam-
mers as the first player and a set of wardens as the second
player. The authors studied how the warden adjusts its de-
tection threshold to increase its detection probability while
the transmitter and the jammers vary their transmission
power to increase the detection error probability (DEP) at
the wardens. In [15], the authors proposed an uncoordinated
jammer selection scheme where a set of friendly jammers
cooperate to hide an ongoing transmission in a distributed
fashion, which is based on their channel gains to the legiti-
mate receiver. However, they only considered the covertness
of only one communication channel. If the network has
multiple simultaneous transmitters, their proposed jammer
selection scheme becomes inefficient as different receivers
would have different channel gain thresholds. Furthermore,
the additional cost to the transmitter of deploying multiple
jammers was not investigated. Finally, we should note that,
to the best of our knowledge, the covertness of JRC systems
was not addressed before in the literature.

2.2 Spectrum Allocation for JRC Systems

Spectrum allocation by JRC nodes for both radar sensing
and data transmission has received a significant interest
in the literature [7]. For instance, in [16], a resource man-
agement and scheduling (RMS) process is developed to
quantify JRC system’s performance where different quality-
of-service (QoS) metrics are derived for different use cases of
JRC nodes. In [17], authors used deep reinforcement learn-
ing to optimally schedule the spectrum resources by JRC
nodes. In [18], a pricing-based mechanism was proposed for
JRC systems but with a focus on handling the interference
between the radar and communication functions instead of
the market model. However, less focus was given to the
layer where the SSP allocates the spectrum to the JRC nodes.
In [19], a hierarchical game model was proposed to allocate
spectrum resources for OFDM-based JRC systems. A set of
SSPs compete with each other to attract more JRC nodes to
be their clients while the JRC nodes determine their optimal
spectrum demands to maximize their utilities. In [8], a VCG-
like auction mechanism was developed to allocate chan-
nels for autonomous vehicles (AVs). However, the authors
considered all the channels to have the same valuation,
reducing the problem to a single-item auction. In addition,
existing works on mechanism design for spectrum alloca-
tion did not consider the security of the wireless system into
their design, e.g., wardens, which can limit the application
of the proposed mechanisms in practical scenarios. Finally,
both works in [19] and [8] did not consider the uncertainty
about users’ valuations which can negatively impact the

utility of the users. In fact, a quite small perturbation in the
submitted bids can make the solution to the auction model
infeasible and thus practically meaningless [12].

2.3 Robust Optimization in Wireless Networks

Most of the existing works on optimization problems are
based on the assumption that the data defining the con-
straints and the objective function of the problem are ob-
tained precisely. However, in many practical scenarios, this
assumption does not hold and several sources can perturb
the obtained data. For instance, wireless networks have dif-
ferent sources of uncertainties that can significantly impact
the network performance and valuation metrics such as
distance between nodes, CSI and mobile users’ dynamic
spectrum demands. To tackle this problem, robust opti-
mization has been proposed in which the optimization is
performed over an uncertainty set and the objective is to
optimize a worst-case function.

Even though robust optimization is being explored for
more than two decades [12], [20], very few works adopted
robustness in wireless network optimization problems.
In [21], the problem of uncertainty about wireless sensors’
locations was considered to design a robust solution that
maximizes the extracted data, minimizes the consumed
energy, and maximizes the network lifetime. The robust
solution is defined as the one with the best worst-case
objective over the uncertainty set. The authors showed that
as the uncertainty set increases in size, the robust solution
provides a significant improvement in the worst-case but
with the expense of some loss in optimality, known as the
price of robustness [20]. A distributed robust optimization
problem was developed in [22] to solve the problem of
power and rate control in wireless communication networks
under the uncertainty of CSI. In a recent work [23], a
robust optimization approach was considered for mobile
data offloading problem, which is formulated as a multi-
item auction where the spectrum for mobile users is auc-
tioned by the SSP to offload from the main base station to
other access points. The proposed auction mechanism uses
historical data from previous bids to determine the winners
and payments. However, the proposed model relies only on
previous bids and does not consider the realized new bids
during the auction process. This makes the derived solution
suboptimal as users might change their submitted bids over
time. In addition, a limited discussion was provided about
the valuation function of the mobile users, which signifi-
cantly impacts the derived uncertainty set. Finally, existing
works on mechanism design for spectrum allocation did not
consider the security of the wireless system in their design,
which can limit the application of the proposed mechanisms
in practical scenarios.

Compared with existing works, the proposed auction
mechanism in this paper has the following characteristics:
(1) we consider the uncertainty in the submitted bids to
derive a robust solution that prevents violation of optimal
auction properties and is always feasible in practice; (2)
we provide examples of relevant uncertainty sets to our
problem while the proposed mechanism still works for
general uncertainty sets; and (3) we show that our robust
mechanism can model the risk level of the SSP towards
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the solution based on the size of the uncertainty set. Even
though the obtained total social welfare can be lower than
the one obtained by deterministic auctions, i.e., which do
not consider the uncertainty of bids, it is less risky and more
robust in terms of feasibility.

3 SYSTEM MODEL

In this section, we first describe our proposed covert JRC
system and then present the metrics used by the JRC nodes
to evaluate the spectrum and derive their bids. Finally, we
present the auction market model where we define the
utilities of the SSP and the JRC nodes, followed by the
properties of the desired optimal auction solution.

3.1 Covert JRC System

Warden

Receiver

Jammer

Obstacle

Communication

In
terferen

ce
Jamming

JRC node iJRC node 1

……

SSP (Auctioneer)

Allocation:

a
i
=[a1,…,am]

Bidders

Bids:

b
i
=[b1, …,bm]

Channel Allocation Auction Model Covert JRC Model

Fig. 1: An illustration of the proposed channel allocation
auction model and the covert JRC system with the friendly
jammer, where a warden is trying to detect the ongoing
signals between the JRC node and a receiver/obstacle.

Figure 1 presents the network model under considera-
tion. We consider a setN = {1, . . . , N} of JRC nodes. These
JRC nodes are under the coverage area of an SSP that has
a set M = {1, . . . ,M} of channels for allocation, using
time-division multiple access (TDMA) to the JRC nodes.
Therefore, each channel can be used only by one JRC node
at a time, which minimizes mutual interference between
neighboring JRC nodes. Each channel has Mc orthogonal
sub-carriers that are used by each JRC node to modulate
OFDM symbols to transmit simultaneously data and sense
the environment [5], [24]. However, due to the nature of the
wireless signal transmission, a warden can detect ongoing
data and radar transmissions. To overcome this security
issue, we consider that the SSP deploys friendly jammers
to lower the probability of warden’s success detection to
enable the covert JRC system. Friendly jammers help by
transmitting random signals to increase the uncertainty at
the warden about the ongoing transmission when analyzing
the received energy1. Without loss of generality, we consider
that each JRC node is assisted with one jammer and has
one warden trying to detect its data transmission and radar
sensing. Similar to [15], the jamming power is considered
fixed for all the jammers to an optimal value that balances

1. This can be further extended to have multiple jammers assisting
each JRC node similar to the work presented in [15], which adds more
uncertainty to the warden about the aggregate interference power.

between increasing the DEP at the warden and the outage of
the legitimate receiver. Note here that the focus of the paper
is on channel allocation through the auction mechanism.
The optimization of jamming and transmit power of data
and radar transmissions can be done, e.g., as in [15]. The
covertness of the radar signals is meant to prevent the
warden from identifying the exact JRC node that is trying to
sense the environment.

It is interesting to note that on one hand, allocating one
jammer for each JRC node might be a waste of resources
and one jammer can offer covertness to several JRC nodes.
On the other hand, if we use one jammer for more than one
JRC node, the jammer will have to transmit at an average
power of the covered JRC nodes. This makes some of the
JRC nodes much weaker as the used jamming power is far
from the optimal jamming power that would be used in the
case of single jammer single JRC node scenario, and hence,
their transmission can be easily detected by wardens. We
should also highlight that existing works, e.g., [15], [25], sug-
gest that increasing the number of jammers per transmitter
brings much more covertness compared to the scenario of
single-jammer single-transmitter architecture. Nevertheless,
associating one jammer for each JRC node is an important
concern in large scale applications, e.g., device-to-device
(D2D) communications for extended coverage. In that sce-
nario, it is possible to use existing JRC nodes as friendly
jammers. In this case, how to motivate these nodes to act as
friendly jammers would be an interesting issue for further
study.

3.2 Valuation Metrics

Different from traditional resource allocation problems, both
the radar sensing and data transmission functions need to
be jointly optimized in JRC systems. The JRC nodes, there-
fore, have to consider radar sensing and data transmission
performance simultaneously to evaluate the valuation of the
spectrum to be acquired through the auction from the SSP.
Furthermore, too high transmit power makes the transmit-
ter’s sensitive information (e.g., location) more detectable
to the warden [26]. Therefore, we first analyze the DEP of
the warden under generalized fading channels and obtain
the closed-form expression of DEP, with arbitrary transmit
and jamming power. With the help of the friendly jammer,
the transmitter transmits JRC signals while ensuring that the
warden’s DEP is close to 1. Only then we can ensure that the
communication is covert [27]. With such a precondition, we
further analyze the radar and communication performance
of the system. We consider the mutual information (MI)
between the received signal and the target impulse response
to be an important valuation metric for radar systems [5],
[24]. The accuracy of the estimated target parameters in-
creases with an increase of the MI [5]. In addition, channel
capacity (CC) enables the computation of the highest data
rate that can be reached via a communication channel and
is an important metric for communication systems. It has
been shown in [28] and [5] that minimizing the minimum
mean square error (MMSE) in estimating the target impulse
response is equivalent to maximizing the MI and that careful
adjustment of the transmit power according to the channel
state information (CSI) increases the data rate. Therefore, in
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this work, we adopt MI and CC as the major performance
metrics used by the JRC nodes to evaluate the spectrum
resources. Because we ensure that the transmission is covert
(DEP → 1), we can call MI and CC as covert MI and covert
CC, respectively.

3.2.1 Channel Model

First, we adopt a three-dimensional Cartesian coordinate
system to represent locations. The locations of a JRC node
i, a jammer g, a receiver b, and a warden w are denoted

by qi = [xi, yi, zi]
T

, qg = [xg, yg, zg]
T

, qb = [xb, yb, zb]
T

and qw = [xw, yw, zw]
T

, respectively. The distance between
two devices d1 and d2 is expressed as Dd1d2 = ‖qd1 − qd2‖,
and αd1d2 is the corresponding path loss exponents. We then
use the α − µ distribution to model the small-scale fading,
which is a general fading model that includes several im-
portant other distributions, such as the Weibull, One-Sided
Gaussian, Rayleigh, and Nakagami. The probability density
function (PDF) and the cumulative distribution function
(CDF) expressions of a squared α − µ random variable Υ
are given by [29]:

fΥ (γ) =
αγ

αµ
2

−1

2β
αµ
2 Γ (µ)

exp

(

−

(

γ

β

)α
2

)

, (1)

and

FΥ (γ) =
γ
(

µ, γ
α
2 β−α

2

)

Γ (µ)
, (2)

respectively, where Γ (·) is the gamma function [30, eq.

(8.310.1)], β = ῩΓ(µ)

Γ(µ+ 2
α)

, γ̄ = E (γ), and γ (·) is the incom-

plete gamma function [30, eq. (8.35)].

3.2.2 Detection Error Probability at Warden

The warden’s objective is to minimize the DEP of the ongo-
ing signal transmission, i.e., data and radar signals. For JRC
node i’s sub-carrier m of channel j, the DEP is defined as
[31]:

ξ
(ij)
m = PFA + PMD, (3)

where PFA is the probability of false alarm, which

is defined as Pr
(

σ2
c +D

−αgw
gw p

(J)
g h2wg > εm

)

, PMD is

the probability of miss detection, which is defined as

Pr
(

D−αiw

iw p
(T )
m h2wm +D

−αgw
gw p

(J)
g h2wg + σ2

c < εm
)

, σ2
c is the

noise power, εm is the detection threshold, p
(T )
m is the

transmit power, p
(J)
g is the jamming power, h2wm ∼ α −

µ
(

α
(ij)
wm, µ

(ij)
wm, γ̄

(ij)
wm

)

, and h2wg ∼ α − µ
(

α
(ij)
wg , µ

(ij)
wg , γ̄

(ij)
wg

)

.

As there are Mc sub-carriers for each channel, we consider
the DEP for channel j to be the minimum over all DEP for
each sub-carrier, i.e.:

ξ
(ij)
w = min

m∈Mc

ξ
(ij)
m . (4)

Theorem 1. The closed-form DEP can be derived as (5),

where C1w , D−αiw

iw p
(T )
m , and C2w , D

−αgw
gw p

(J)
g .

Proof: Let Y1 , σ2
c + C2wh

2
wg and Y2 , C1wh

2
wm +

C2wh
2
wg + σ2

c = C1wh
2
wm + Y1. According to the definition

of ξ
(ij)
m , we have

ξ
(ij)
m = 1− FY1 (εm) + FY2 (εm) . (A-1)

In the following, we derive the CDF expressions of Y1
and Y2. With the help of definition of CDF, we have

FY1(y)=Fh2
wg

(

y−σ2
c

C2w

)

=

γ



µ
(ij)
wg ,

(

y−σ2
c

C2w

)

α
(ij)
wg
2
β
(ij)
wg

−α
(ij)
wg
2





Γ
(

µ
(ij)
wg

) .

(A-2)

The CDF of Y2 can be expressed as [32]

FY2 (y) =

∫ ∞

0

FY1 (y − t)
1

C1w
fh2

wm

(

t

C1w

)

dt. (A-3)

Substituting the CDF and PDF expressions in (A-3),
with the help of [33, eq. (06.06.07.0002.01)], [33, eq.
(01.03.07.0001.01)], and [30, eq. (3.194.3)], we can express
FY2 (y) as (A-4), shown at the top of the next page, which
can be re-written in closed-form with the help of the defini-
tion of multivariate Fox’s H-function [34, eq. (A-1)]. Thus,
by substituting CDF expressions of Y1 and Y2 into (A-1), the
DEP can be derived as (5), which completes the proof.

Note that although the warden’s estimate of the channel
state is imperfect (including the JRC node’s transmit power
and the jamming power, which are factors in (5)), to verify
the robustness of the proposed covert system design, we
consider that the warden knows the perfect information
(as the worst-case scenario). This assumption is actually
common in the literature, e.g., in [25], [35]. If we can still
guarantee that the DEP is arbitrarily close to 1 under the
worst-case scenario, covert communication is successfully
achieved. This is also clarified later in the results section
(Figure 2).

3.2.3 Covert Channel Capacity

The covert CC obtained under the precondition that DEP
→ 1, which reflects the covert communication rate. For the
channel j of JRC node i, the CC is defined as [5], [19]:

Cij =

Mc
∑

m=1

∆f log2






1 +

D
−αbi
bi p

(T )
m

∣

∣

∣
h
(ij)
m

∣

∣

∣

2

σ2
c +D

−αgi

gi p
(J)
g

∣

∣

∣
h
(ij)
g

∣

∣

∣

2






, (6)

where
∣

∣

∣h
(ij)
m

∣

∣

∣

2
∼ α−µ

(

α
(ij)
m , µ

(ij)
m , γ̄

(ij)
m

)

and
∣

∣

∣h
(ij)
g

∣

∣

∣

2
∼ α−

µ
(

α
(ij)
g , µ

(ij)
g , γ̄

(ij)
g

)

represent the small scale fading of each

sub-carrier m and the jammer, respectively [29]. D−αbi

bi and

D
−αgi

gi denote the large scale fading between the receiver
and the JRC node i and between the jammer j and the JRC

node i, respectively. p
(T )
m and p

(J)
g are the transmit power of

the m-th sub-carrier and the jammer, respectively. ∆f = 1
T

is the sub-carrier interval with the duration of elementary
OFDM symbol T and σ2

c is the noise variance. The jammer’s
location and its jamming power are publicly shared by the
SSP to enable the JRC nodes to calculate the covert channel
capacity defined in (6).

Theorem 2. The closed-form expression of CC can be de-
rived as (7), where H ·

· (·) is the multivariate Fox’s H-

function [34, eq. (A-1)], C1 , D−αbi

bi p
(T )
m , and C2 ,

D
−αgi

gi p
(J)
g .
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FY2 (y) =
α
(ij)
wm

2
(

C1wβ
(ij)
wm

)

α
(ij)
wmµ

(ij)
wm

2
Γ
(

µ
(ij)
wm

)

Γ
(

µ
(ij)
wg

)

(

y − σ
2
c

)

α
(ij)
wmµ

(ij)
wm

2

(

1

2πi

)2

×

∫

L1

∫

L2

Γ

(

1−
s1α

(ij)
wg

2

)

Γ
(

s1 + µ
(ij)
wg

)

Γ(−s1) Γ
(

α
(ij)
wmµ

(ij)
wm

2
+ s2α

(ij)
wm

2

)

Γ

(

1 + α
(ij)
wmµ

(ij)
wm

2
+ s2α

(ij)
wm

2
−

s1α
(ij)
wg

2

)

Γ(1− s1) Γ−1(−s2)

(

y − σ2
c

C1wβ
(ij)
wm

)

s2α
(ij)
wm
2

(

y − σ2
c

C2wβ
(ij)
wg

)

−s1α
(ij)
wg

2

ds2ds1 (A-4)

ξ
(ij)
m =1−

γ



µ
(ij)
wg ,

(

εm−σ2
c

C2w

)

α
(ij)
wg
2
β
(ij)
wg

−α
(ij)
wg
2





Γ
(

µ
(ij)
wg

) −
α
(ij)
wm

(

εm − σ2
c

)

α
(ij)
wmµ

(ij)
wm

2

2
(

C1wβ
(ij)
wm

)

α
(ij)
wmµ

(ij)
wm

2
Γ
(

µ
(ij)
wm

)

Γ
(

µ
(ij)
wg

)

×H
0,1:2,1:1,1
1,0:1,2:0,0









C1wβ
(ij)
wm

εm−σ2
c

C2wβ
(ij)
wg

εm−σ2
c

∣

∣

∣

∣

∣

∣

(

1 + α
(ij)
wmµ

(ij)
wm

2
: −

α
(ij)
wg

2
, α

(ij)
wm

2

)

:
(

1− µ
(ij)
wg , 1

)

(1, 1) ;
(

1− α
(ij)
wmµ

(ij)
wm

2
, α

(ij)
wm

2

)

− :

(

1,−
α
(ij)
wg

2

)

(0, 1) ; (0, 1)









(5)

Cij =

Mc
∑

m=1

2∆f

ln 2



2
(

C2β
(ij)
g

)

α
(ij)
g µ

(ij)
g

2
Γ
(

µ
(ij)
g

)





−1

(

C1β
(ij)
m

)
α
(ij)
m µ

(ij)
m

2
Γ
(

µ
(ij)
m

)

(

σ
2
c

)

α
(ij)
m µ

(ij)
m

2
+

α
(ij)
g µ

(ij)
g

2

×H
0,1:2,2;1,1
1,0:3,3;1,1









C1β
(ij)
m

σ2
c

C2β
(ij)
g

σ2
c

∣

∣

∣

∣

∣

∣

(

1 + α
(ij)
m µ

(ij)
m

2
+

α
(ij)
g µ

(ij)
g

2
: 1, 1

)

:
(

1, 2

α
(ij)
m

)(

α
(ij)
m µ

(ij)
m

2
, 1
)(

1+ α
(ij)
m µ

(ij)
m

2
, 1
)

;

(

1, 2

α
(ij)
g

)

− :
(

α
(ij)
m µ

(ij)
m

2
, 1
)(

α
(ij)
m µ

(ij)
m

2
, 1
)(

1 + α
(ij)
m µ

(ij)
m

2
, 1
)

;

(

α
(ij)
g µ

(ij)
g

2
, 1

)









(7)

Proof: Let Ci =
Mc
∑

m=1
∆fCm. The Cm can be ex-

pressed as

Cm =

∫ ∞

0

log (1 + γ) fX (γ)dγ, (B-1)

where X
∆
=

C1|h(ij)
m |

2

σ2
c+C2

∣

∣

∣
h
(ij)
g

∣

∣

∣

2 . Next, we first derive fX (γ).

Let X1 = C1

∣

∣

∣h
(ij)
m

∣

∣

∣

2
and X2 = σ2

c + C2

∣

∣

∣h
(ij)
g

∣

∣

∣

2
,

we have fX1 (x) = 1
C1
f∣
∣

∣
h
(ij)
m

∣

∣

∣

2

(

x
C1

)

and fX2 (x) =

1
C2
f∣
∣

∣
h
(ij)
g

∣

∣

∣

2

(

x−σ2
c

C2

)

. The PDF of X can be expressed as [36]

fX(x) =
∫∞
0 yfX1(xy)fX2 (y)dy. With the help of PDF

expressions of X1 and X2, we have

fX(x)=

x
α
(ij)
m µ

(ij)
m

2
−1



2
(

C2β
(ij)
g

)

α
(ij)
g µ

(ij)
g

2
Γ
(

µ
(ij)
g

)





−1

2
(

α
(ij)
g α

(ij)
m

)−1(

C1β
(ij)
m

)

α
(ij)
m µ

(ij)
m

2
Γ
(

µ
(ij)
m

)

IA1 ,

(B-2)

where

IA1 =

∫ ∞

0

(

y − σ
2
c

)

α
(ij)
g µ

(ij)
g

2
−1

exp









−

(

xy

C1β
(ij)
m

)

α
(ij)
m
2









× y
α
(ij)
m µ

(ij)
m

2 exp









−

(

y − σ2
c

β
(ij)
g C2

)

α
(ij)
g
2









dy. (B-3)

With the help of [33, eq. (01.03.07.0001.01)], we can re-
write fX(x) as

fX(x)=

x
α
(ij)
m µ

(ij)
m

2
−1



2
(

C2β
(ij)
g

)

α
(ij)
g µ

(ij)
g

2
Γ
(

µ
(ij)
g

)





−1

2
(

α
(ij)
g α

(ij)
m

)−1
(2πi)2

(

C1β
(ij)
m

)

α
(ij)
m µ

(ij)
m

2
Γ
(

µ
(ij)
m

)

×

∫

L1

∫

L2

Γ(−s1)

(

1

β
(ij)
g C2

)

s2α
(ij)
g
2

(

x

C1β
(ij)
m

)

s1α
(ij)
m
2

× Γ (−s2) IA1ds1ds2, (B-4)

where the integration path of L1 and L2 goes
from σ1 − i∞ to σ1 + i∞ and σ2 − i∞ to
σ2 + i∞, respectively, and σ1, σ2 ∈ R, IA1 =
∫∞
0 y

α
(ij)
m µ

(ij)
m

2 +
s1α

(ij)
m
2

(

y − σ2
c

)

α
(ij)
g µ

(ij)
g

2 +
s2α

(ij)
g
2 −1

dy, which
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can be solved with the help of [30, eq. (3.194.3)]. Let t1 =
s1α

(ij)
m

2 and t2 =
s2α

(ij)
g

2 . By substituting fX(x) into (B-1), the
Cm can be expressed as (B-5), shown at the top of the next

page, where IB =
∫∞
0 log (1 + γ) γt1+

α
(ij)
m µ

(ij)
m

2 −1dγ. With
the help of [37, eq. (2.6.9.21)] and [30, eq. (8.334.3)], IB can
be solved. Substituting IB into (B-5), using the definition of
multivariate Fox’s H-function [34, eq. (A-1)], we can obtain
(7) to complete the proof.

Note here that the so called ”covert channel capacity” is
the same as standard channel capacity with the condition
that the DEP is close to 1. If the DEP is far lower than
1, the communication is no longer covert but the capacity
of the channel to transmit data is not affected. In other
words, the DEP can be less than 0.9 but still the derived
channel capacity is correct. However, it is not common in
the literature to refer to such system as “covert“. See for
example references [4], [15], [25], where the communication
is said to be covert only when DEP is between 0.9 and 1.

3.2.4 Covert Radar Mutual Information

When we ensure that (5) is arbitrarily close to 1 by adjusting
the transmit and jamming power, we can guarantee that the
signals will not be detected [27]. Now the MI of the JRC
system is called covert radar MI. For the channel j of JRC
node i, the MI is defined as [5], [19]:

Iij =
∆fTpri

2

Mc
∑

m=1

log2

(

1+
TpriD

−αbi
bi p

(T )
m |G (fm)|2

Ψ(fm)+D
−αgi

gi p
(J)
g |J (fm)|2

)

, (8)

where Tpri = Tpulse/δ is the pulse repetition interval of the
radar system, Tpulse is the radar pulse duration, δ is the
radar duty factor, G (fm), J (fm) and Ψ(fm) are energy
spectral densities (ESDs) of the transmitted signal, jamming
signal and noise, respectively. According to [38, eq. (5)],
ESD is viewed as uniform in each sub-channel, and we

can consider that |G (fm)|2 ∼ α − µ
(

α
(ij)
rm , µ

(ij)
rm , γ̄

(ij)
rm

)

,

|J (fm)|2 ∼ α − µ
(

α
(ij)
rg , µ

(ij)
rg , γ̄

(ij)
rg

)

, and |Ψ(fm)|2 = σ2
r ,

σ2
r is the noise power, Tpri is the signal duration, and
fm = fc + m∆f is the m-th subcarrier frequency with fc
the central frequency. Note that it is possible for the warden
to detect reflected signals during radar sensing. However,
with the help of the jamming signals, the warden will not
be able to know which JRC node has initiated the radar
sensing, which is the objective of the covertness for radar
sensing.

Theorem 3. The covert radar MI rate can be expressed in

closed-form as (9), where C3 , TpriD
−αbi

bi p
(T )
m , and C4 ,

D
−αgi

gi p
(J)
g .

Proof: Following the similar steps to Theorem 2, we
can derive (9) to complete the proof.

3.3 Auction Model

Figure 1 presents the proposed auction model. We consider
that the SSP, as the auctioneer, is offering a unit bundle
that consists of a set of channels and friendly jammers
to enable covertness for the JRC nodes as the bidders.
The SSP conducts an auction by broadcasting its available
spectrum resources to the JRC nodes at every time period
Tb (e.g., every 10 seconds). The JRC nodes buy spectrum

resources from the SSP and use them for radar sensing and
data transmission. Each JRC node i submits its bid vector
bi = (b1, b2, . . . , bM ) to the SSP. Each element of the vector
bi represents the bid that JRC node i is willing to pay for
channel j. Setting bij = 0 means that the JRC node is not
interested in channel j. Before the auction starts, the SSP
first calculates the nominal allocation and reservation prices
(defined later in Section 4). The calculation of the reservation
prices prevents market manipulation by setting a lower
bound on acceptable amounts of bids for any JRC node in
order to be included in the winner list. After receiving the
bids from the JRC nodes, the SSP (as the auctioneer) runs
the winner selection algorithm to derive the final allocation
vector ai = (a1, a2, . . . , aM ) and the payment pi for each
JRC node i. The winning JRC nodes are then allowed to use
the channels according to their allocation vectors ai, ∀i ∈ N .
In the following, we define the utility functions of the JRC
nodes and the SSP and the social welfare maximization
problem.

3.3.1 Utility Functions

The utility of the SSP is defined as the difference between
the payment that it receives from all JRC nodes and the total
cost to maintain the channels:

uSSP =
∑

i∈N
pi − c(x), (10)

where pi is the payment given by JRC node i and c(x) =
∑

i∈N

∑

j∈M
cjxij is the total channel cost for the allocation

vector x = {xij}i∈N,j∈M and cj is the per channel cost for
the SSP. The channel cost includes the required computing
resources to maintain the channel and the cost of friendly
jammers for ensuring the covertness of the JRC system. The
cost of channel j is expressed as follows:

cj = κ1,jpFJ,j + κ2,j , (11)

where pFJ,j is the total jamming power used to covert
channel j, κ1,j is the per unit cost of the jamming power, and
κ2,j is a constant that reflects the licensing fees for channel
j.

We consider TDMA for the radar and communication
functions by the JRC system. Specifically, for some time
slots, the allocated channel will be used for radar sensing
and then for data transmission in the other time slots. Each
JRC node i has a private valuation of channel j denoted by
vij which is unknown to the SSP. The valuation for each JRC
node can vary because of the hardware specific design for
each JRC node, e.g., supported wireless technologies that
operate on different bandwidths. Also, the valuations given
by a JRC node i can differ from one channel to another
channel because each channel provided by the SSP can have
different transmission characteristics and channel fading
parameters. We define the valuation as follows:

vij = Iij(η1Iij + η2Cij)ξw, (12)

where Iij is an indicator function in the form of a binary
matrix that reflects the ability of JRC node i to use channel
j or not, and is known to the SSP. η1 and η2 are scaling
factors, and ξw is the DEP at warden w. The DEP in (12)
reflects the discount in the valuation due to the probabilities
that the warden detects the ongoing transmission by the
JRC node. The DEP is chosen to get multiplied into the
weighted sum of the covert channel capacity and the covert
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Cm =
4

(2πi)2



2
(

C2β
(ij)
g

)

α
(ij)
g µ

(ij)
g

2
Γ
(

µ
(ij)
g

)





−1

2
(

C1β
(ij)
m

)

α
(ij)
m µ

(ij)
m

2
Γ
(

µ
(ij)
m

)

(

σ
2
c

)

α
(ij)
m µ

(ij)
m

2
+

α
(ij)
g µ

(ij)
g

2

×

∫

L1

∫

L2

Γ
(

− 2t1

α
(ij)
m

)

Γ

(

α
(ij)
g µ

(ij)
g

2
+ t2

)

Γ

(

− 2t2

α
(ij)
g

)

Γ−1

(

−α
(ij)
m µ

(ij)
m

2
−

α
(ij)
g µ

(ij)
g

2
− t1 − t2

)

Γ
(

−α
(ij)
m µ

(ij)
m

2
− t1

)

(

σ2
c

C1β
(ij)
m

)t1
(

σ2
c

C2β
(ij)
g

)t2

IBdt1dt2 (B-5)

Iij =

Mc
∑

m=1

∆fTpri

ln 2



2
(

C4β
(ij)
rg

)

α
(ij)
rg µ

(ij)
rg

2
Γ
(

µ
(ij)
rg

)





−1

(

C3β
(ij)
rm

)

α
(ij)
m µ

(ij)
m

2
Γ
(

µ
(ij)
rm

)

(

σ
2
r

)

α
(ij)
rm µ

(ij)
rm

2
+

α
(ij)
rg µ

(ij)
rg

2

×H
0,1:2,2;1,1
1,0:3,3;1,1









C3β
(ij)
rm

σ2
r

C4β
(ij)
rg

σ2
r

∣

∣

∣

∣

∣

∣

(

1+ α
(ij)
rm µ

(ij)
rm

2
+

α
(ij)
rg µ

(ij)
rg

2
: 1, 1

)

:
(

1, 2

α
(ij)
rm

)(

α
(ij)
rm µ

(ij)
rm

2
, 1
)(

1 + α
(ij)
rm µ

(ij)
rm

2
, 1
)

;

(

1, 2

α
(ij)
rg

)

− :
(

α
(ij)
rm µ

(ij)
rm

2
, 1
)(

α
(ij)
rm µ

(ij)
rm

2
, 1
)(

1 + α
(ij)
rm µ

(ij)
rm

2
, 1
)

;

(

α
(ij)
rg µ

(ij)
rg

2
, 1

)









(9)

MI in (12) because as the DEP decreases, the output of
the valuation function in (12) needs to decrease linearly. If
the DEP was just an addition term, the change in the final
valuation output would be less apparent2. In other words,
in (12), we are counting the percentage that we are able to
protect against the warden, which is reflected using the DEP
value (between 0 and 1). For instance, if the DEP is high
(close to 1), this would imply a meaningful allocation to the
JRC node, i.e., the performed communication and sensing
are successfully covert. Otherwise, if the DEP is low, that
indicates a wasted resource allocation.

Note that the impact of the two scaling factors cannot
be observed beyond the JRC node itself. Specifically, the
output of (12) is just a number which will be used later
during the auction process. Changing the weighting factors
will only increase or decrease the submitted bids by the
JRC node, i.e., its chances to be among the winners. The
form of (12) has the objective to help the JRC node to
determine the best price to submit so as it maximizes its
benefit from getting the resource. The impact of changes of
the value computed by (12) is explored later in the results
section. When the JRC node obtains the spectrum, then
based on those coefficients it will allocate the spectrum
proportionally for both functionalities based on a TDMA
scheme, as discussed in the paper. Furthermore, the scaling
factors can vary dynamically over time based on the JRC
node’s demand for data transmission or target sensing to
assert a certain trade-off as we demonstrated in our previous
work [8].

The JRC node i’s utility is then defined as the difference
between its valuation for all the channels and its payment pi,
which is expressed by the following quasilinear preference
function:

ui =







∑

j∈M
vijxij − pi, if JRC node i wins,

0, otherwise.
(13)

2. further mathematical explanation can be found in [39].

3.3.2 Social Welfare Maximization

The solution to the auction mechanism is the maximization
of the social welfare function which is defined as the sum of
all the utilities, i.e., the utility of the SSP and all the utilities
of the JRC nodes. Formally, the social welfare function is
defined as:

SW = uSSP +
∑

i∈N
ui

=
∑

i∈N

∑

j∈M
vijxij −

∑

i∈N

∑

j∈M
cjxij

=
∑

i∈N

∑

j∈M
(vij − cj)xij . (14)

3.3.3 Properties of The Auction Mechanism

Before solving the maximization problem (14), the following
properties need to be satisfied for an auction to be optimal
and efficient:

• Incentive compatibility (IC): The JRC node i has no
incentive to submit a false bid as for every other bid
v′, the obtained utility is lower than the utility the JRC
node gets by submitting its true valuation v. Formally,

∑

j∈M
v
′
ijxij − p

(v′)
i ≤

∑

j∈M
vijxij − p

(v)
i , ∀i ∈ N , (15)

where p
(v)
i and p

(v′)
i are the obtained payments for the

true valuation v and any other valuation v′, respec-
tively.

• Budget feasibility (BF): The payment vector is budget
feasible. Formally,

p
(v)
i ≤ Bi, ∀i ∈ N , (16)

where Bi is the the maximum budget for JRC node i
and is assumed to be publicly known. The property
of BF is of crucial importance in multi-item auctions.
This is because in real systems, the buyers always
have a limited budget that they need not to exceed.
For example, in an auction mechanism that does not
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consider BF, if a bidder is selected amongst the winners
for several items but he/she cannot pay for all the
items, the solution becomes infeasible. One of the main
problems in multi-item auctions is that the bidder does
not know in advance how many items he/she will win
and hence, its budget needs to be incorporated into the
optimization problem.

• Individual rationality (IR): The utilities must be non-
negative for all JRC nodes, i.e., ui ≥ 0, ∀i ∈ N

• Computational efficiency (CE): The proposed solution
to the optimization problem should be computed in a
polynomial time.

Therefore, to derive an optimal auction that satisfies the
above mentioned properties, problem (14) is rewritten as:

max
x

SW =
∑

i∈N

∑

j∈M
(vij − cj)xij (17a)

s.t.
∑

j∈M
vijxij ≤ Bi, ∀i ∈ N , (17b)

p
(v)
i ≤

∑

j∈M
vijxij , ∀i ∈ N , (17c)

∑

j∈M
v
′
ijxij − p

(v′)
i ≤

∑

j∈M
vijxij − p

(v)i, ∀i ∈ N , (17d)

∑

i∈N
xij ≤ 1, ∀j ∈ M, (17e)

x ≥ 0, (17f)

where xij is the probability that channel j is allocated to
the JRC node i, and cj is the cost for each channel j. The
constraints (17b), (17c) and (17d), refers to BF, IR and IC,
respectively [40]. The constraints (17e) and (17f) ensure that
the vector of allocation probabilities sums to 1. Note that
channels are indivisible items, i.e., each channel is allocated
to only one JRC node at a time. Therefore, we are restricted
to integral values for the allocation vector x, which we
explain later in Algorithm 2.

Finally, the SSP needs to take into consideration the
uncertainty in bids when deriving the solution to the auction
mechanism. The SSP is able to construct an uncertainty
set for these valuations based on the previously submitted
bids by the JRC nodes. It can then use the constructed
uncertainty set during the channel allocation phase to derive
an optimal allocation strategy that reflects its risk-aversion
attitude about uncertain parameters in the system, e.g., the
warden’s location. The size of the uncertainty set determines
the risk-aversion level of the SSP, i.e., how robust we want
to be. If the SSP has a high level of risk-aversion, it will
consider a large uncertainty set and vice-versa. This has also
been validated by other existing works, e.g., [41], in which
the authors showed that the knowledge of a large number of
historical data, i.e., a larger uncertainty set, gives an exhaus-
tive set of scenarios, and guarantees the reliability of the
derived solution, i.e., high risk-aversion level. Furthermore,
in [42], under the assumption of normal distribution, the
authors were able to derive an expression that links the
size of the uncertainty set to the risk level. Therefore, in the
following section, we develop a robust multi-item auction
mechanism that takes into consideration the uncertainty of
bids by all the JRC nodes for each channel.

4 AUCTION-BASED MECHANISM FOR CHANNEL

ALLOCATION

In this section, we formulate the multi-item auction based
JRC resource allocation as a robust optimization problem.
The objective is to maximize the social welfare of the system
for all valuations by the JRC nodes in the constructed
uncertainty set. Unlike previous works that consider the
network geometry to be overt to all the nodes [15], [26],
the uncertain parameters are typically not known to the
transmitters and the SSP, in which case we consider the loca-
tion of the warden to be the uncertain parameter, while the
other uncertain parameters can be adopted in the auction
mechanism. The uncertain parameters significantly impact
the channel gain equations and the spectrum valuation,
and hence reduce the expected social welfare and violate
optimal auction properties. To overcome these challenges,
we develop a robust auction mechanism that considers the
uncertainty in the bidders’ valuations [40].

4.1 Construction of the Uncertainty Set

The SSP can create the uncertainty set for the bids based on
the type of information it has access to. In the following, we
describe two different ways of creating the uncertainty set
U from which the valuation vectors are derived.

4.1.1 Interval Uncertainty Set

In these settings, the belief of the SSP about the valuations of
the JRC nodes is modeled based on the lowest and highest
possible valuations for each JRC node for each channel.
Specifically, the SSP has geometrical information about the
transmitter, receiver, and friendly jammer. However, the
exact location of the warden is unknown either to the JRC
node or to the SSP, affecting the submitted bids by the JRC
nodes for each channel. Therefore, the JRC nodes consider
that the warden is located in a cube instead of a point in the
three-dimensional Cartesian domain. Then, the JRC nodes
can calculate the smallest and largest possible values of DEP
at the warden while varying its location inside the cube. It is
also possible to adopt other forms of uncertainty intervals,
such as when the warden is located on a sphere. Note that
the calculation of the DEPs can be done by methods such as
the particle swarm optimization (PSO) [43] algorithm. Then
they substitutes these values in the valuation function pre-
sented in (12) and derive the lowest and highest valuations
for each JRC node and each channel. The uncertainty set for
channel j with respect to the JRC node i is then defined as
follows:

Uij = {µij ± ςij}, (18)

where µij is the mean value for the valuation of channel j by
the JRC node i, and −ςij and +ςij reflects the minimum and
maximum valuations normalized to zero, respectively. If the
SSP has more than one uncertain parameter, it can adopt
more generalized techniques for creating the uncertainty set,
e.g., correlated historical data technique, presented in the
following.

4.1.2 Correlated Historical Data

If the uncertainty of the SSP about the bids is not limited
to the warden’s location, i.e., multiple or unknown factors,
the belief of the SSP about the valuations of the JRC nodes
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can be modeled using historical data of previous bids.
Specifically, the uncertainty set for channel j is defined as:

Uj =











(v1j , . . . , vNj)

vij = fj + yij , ∀i ∈ N ,

Fj ≤ fj ≤ Fj ,

−ϑ ≤
∑N

i=1 yij−N·µg√
N ·δj

≤ ϑ,











, (19)

where fj is a common factor between valuations that reflects
the correlation between valuations, yij are independent
components with mean µj and standard deviation δj . ϑ
is the parameter that controls the conservativeness of the
historical data.

The robustness is then incorporated in the original prob-
lem (17) as follows:

(z,x∗)=argmax
v∈U







































































max
x

∑

i∈N

∑

j∈M
(vij − cj)xij

s.t.
∑

i∈N
xij ≤ 1, ∀j ∈ M,

∑

j∈M
vijxij ≤ Bi, ∀i ∈ N ,

∑

j∈M
vijxij ≤

∑

j∈M
uijxij ,

∀u ∈ U , ∀i ∈ N ,
x ≥ 0,







































































, (20)

where z = {zij}i∈N,j∈M is the optimal valuation vector and
the objective is to maximize the worst-case social welfare
over all the possible valuation vectors in the uncertainty set
U . By setting ūij = argmin

u∈U

∑

j∈M
x∗ijuij , ∀i ∈ N , the problem

(20) is reformulated as follows:

(z, x∗) = argmax
v∈U































































max
x

∑

i∈N

∑

j∈M
(vij − cj)xij

s.t.
∑

i∈N
xij ≤ 1, ∀j ∈ M,

∑

j∈M
vijxij ≤ Bi, ∀i ∈ N ,

∑

j∈M
vijxij ≤

∑

j∈M
ūi
jxij , ∀i ∈ N ,

x ≥ 0.































































.

(21)

The dual of the inner problem (21) is as follows:

min
ω,φ,ψ

∑

j∈M
ωj +

∑

i∈N

(

φiBi + ψi

∑

j∈M
x∗
ijū

i
j

)

s.t. ωj + zijφi + zijψi + cj ≥ zij , ∀i ∈ N ,∀j ∈ M

φi, ψi ≥ 0, ∀i ∈ N ,

ωj ≥ 0, ∀j ∈ M,

(22)

where ωj , φi andψi are elements ofω,φ andψ, respectively,
and are the duals corresponding to the first, second, and
third constraints in (21).

4.2 Robust Mechanism for Channel Allocation (RMCA)

The proposed Robust Mechanism for Channel Allocation is
executed in two phases:

4.2.1 Nominal Allocation and Reservation Price Calcula-

tion

The first phase of the mechanism is executed offline before
the beginning of the auction and is presented in Algo-
rithm 1. The SSP starts first by constructing the uncertainty
set as previously described in Section 4.1 and then uses
it as an input to the algorithm with the budgets of each
JRC node. Then problem (20), which is a bilinear optimiza-
tion problem and outputs the worst-case valuation vector
z and the nominal allocation vector x∗, is solved using
Generalized Benders Decomposition [44]. The dual of the
problem (20) is then solved to calculate the reservation
prices r∗ = {rij}i∈N ,j∈M in steps 5-9 of Algorithm 1. The
reservation prices are defined as the minimum bids that
should be submitted by each JRC node to be admissible to
the winner list. As such, if a JRC node submits a bid lower
than its reservation prices, it will not be among the winners.
Note that the rationale behind setting the reservation prices
equal to the left term of the first constraint of the dual in (22)
is as follows. Since z is the optimal solution of the primal for
the worst-case valuation, the price that each JRC node has
to pay is equal to that at minimum. Otherwise, the SSP (the
auctioneer) will have a negative utility.

Algorithm 1: RMCA.a

Input : Uncertainty set U , and budgets B1, . . . , BN .
Output: Reservation prices r∗, and nominal

allocations x∗.
1 begin
2 (z, x∗)← Solve problem (20);
3 (ω∗, φ∗, ψ∗)← Solve problem (22);
4 // Calculate reservation prices
5 foreach i ∈ N do
6 foreach j ∈ M do
7 r∗ij = ω∗

j + zijφ
∗
i + zijψ

∗
i + cj ;

8 end
9 end

10 end

4.2.2 Final Allocation and Payment Calculation

The second phase of the mechanism is executed after the
bid vector is realized, i.e., the JRC nodes submit their bids to
the SSP, and is presented in Algorithm 2. First, the adapted
allocation vector y(v) is calculated by solving the following
problem (23), in which the objective is to maximize the
social welfare with consideration of the previously derived
reservation prices r∗ and the realized bid vector v:

max
y(v)

∑

i∈N

∑

j∈M

(vij − cj − r
∗
ij)y

(v)
ij (23a)

s.t.
∑

i∈N

y
(v)
ij ≤ 1−

∑

i∈N

x∗ij , ∀j ∈M (23b)

∑

j∈M

y
(v)
ij uij ≤ Bi −

∑

j∈M

x∗ijr
∗
ij +

∑

j∈M

x∗ijψ
∗
i ū

i
j ,

∀u ∈ U , ∀i ∈ N ,

(23c)

y(v) ≥ 0. (23d)
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Then we calculate the adapted allocation y(v)−k which is
similar to problem (23) with JRC node k removed from the
set of bidders:

max
y
(v)

−k

∑

i∈N\{k}

∑

j∈M

(vij − cj − r
∗
ij)y

(v)−k

ij (24a)

s.t.
∑

i∈N\{k}

y
(v)−k

ij ≤ 1−
∑

i∈N

x∗ij , ∀j ∈M (24b)

∑

j∈M

y
(v)−k

ij uij ≤ Bi −
∑

j∈M

x∗ijr
∗
ij , ∀u ∈ U , ∀i ∈ N\{k},

(24c)

y(v)−k ≥ 0. (24d)

The payments are then calculated by using a VCG-like
method, in which the JRC nodes are charged the lowest
amount that they could have bid such that they are in the
winner list [40].

Algorithm 2: RMCA.b

Input : Realized bid vector v = {vij}i∈N ,j∈M,
reservation prices r∗ = {rij}i∈N ,j∈M, and
nominal allocation x∗ = {xij}i∈N ,j∈M

Output: Allocation vector a∗ = {aij}i∈N ,j∈M, and
payment p∗ = {pij}i∈N ,j∈M

1 begin
2 if v /∈ U then
3 Do not allocate any channel to any JRC node

and exit the auction.
4 else

5 y(v) ← Solve problem (23);
6 foreach k ∈ N do

7 y(v)−k ← Solve problem (24);
8 end
9 // Calculate the final allocation vector

10 foreach i ∈ N do
11 foreach j ∈ M do
12 a∗ij = yvij + x∗ij ;
13 end
14 end
15 // Calculate the payment vector
16 foreach k ∈ N do

17 pk =
∑

j∈M
y
(v)
kj r

∗
kj +

∑

j∈M
x∗kjr

∗
kj −

∑

j∈M
x∗kjψ

∗
kū

k
j+

18
∑

i∈N\{k}

∑

j∈M
(vij − r

∗
ij)y

(v)−k

ij −

∑

i∈N\{k}

∑

j∈M
(vij − r∗ij)y

(v)
ij , ∀k ∈ N ;

19 end
20 Allocate the jth channel to the ith JRC node

with probability a∗ij and charge
pi/

∑

j∈M a∗ij to the ith JRC node;

21 end
22 end

Since the channels are indivisible items, we are restricted
to binary allocations of the channels to the JRC nodes, i.e.,
each channel is allocated to only one JRC node at a time.
Therefore, step 20 in Algorithm 2 consists of allocating chan-
nels randomly based on the allocation vector a∗. Moreover,

the condition v /∈ U is necessary as if the realized bid vector
v does not belong to the uncertainty set U . As such, the
solution to the auction mechanism will be suboptimal as
there might be negative utilities, violating the IR property.

Note here that both the JRC nodes and the SSP deal
with the uncertainty but in different phases of the algorithm
(RMCA). Specifically, the first phase of the algorithm is
executed offline, i.e., before the JRC nodes start submitting
their realized bids (RMCA.a). At this point, and as men-
tioned is Section 4.1.1, each JRC node calculates the DEP
interval using PSO algorithm. The SSP is considered to have
collected these valuation before the beginning of the auction.
The SSP uses the constructed uncertainty set during the
nominal allocation phase (RMCA.a) to derive an optimal
allocation strategy that reflects its risk-aversion about the
warden’s location. Finally, when the JRC nodes want to
submit their realized bids, they draw the DEP value from a
uniform distribution in the interval between the minimum
and maximum values of the DEP.

Theorem 4. The proposed RMCA has the properties of in-
dividual rationality, incentive compatibility and budget
feasibility, all in expectation.

Proof: Since the channel cost cj in the objective func-
tion of problem (20) is constant, we can consider vij − cj
as one variable. Therefore, with this change of variable, the
proof follows from the one derived in [40].

4.3 Discussion on The IC Property

The most important property that should be satisfied by
auctions is IC. The proof of the IC property is omitted here
to avoid overloading the paper. Here, we give the intuition
behind the proof.

First, we should note that IC is not impacted directly
by the uncertainty of bids. The IC is the property that
guarantees that the bidders have no incentive to misreport
their bids. This is guaranteed if we can prove that any
other submitted bids will not bring additional benefit for
the bidder than its true valuation, as formulated in (15).
As illustrated in Algorithm 1, the objective of the first
phase of RMCA is to derive the nominal allocation, the
worst-case valuation vector and the reservation prices. This
Algorithm 1 is executed before the beginning of the auction,
i.e., before the JRC nodes submit their bids, and use only
the constructed uncertainty set. The construction of the
uncertainty set, as detailed in Section 4.1, is done by the SSP
and hence, the uncertainty set cannot be forged. The second
phase of RMCA, described in Algorithm 2, is executed after
the JRC nodes submit their bids, which might be untruthful.
However, a malicious JRC node is aware that in the first
phase of RMCA, the reservation prices have been calculated
and submitting a bid lower than its associated reservation
price will prevent the JRC node from being in the winner
list. Even though this rational does not totally prevent
the malicious JRC node from misreporting its valuation, it
can still help preventing the SSP from getting a negative
utility, as discussed in Section 4.2. The important instruction
that prevents a malicious JRC node from misreporting its
valuation/bid, is in step-2 of Algorithm 2. Specifically, if the
submitted bid is outside the uncertainty set, which is used to
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derive the optimal auction solution, the auction process will
be reset again and no channel is allocated to any JRC node.
In other words, a malicious JRC node cannot misreport
its bid because the IC property defined in (15) is already
integrated as a constraint in the optimization problem 20,
which shows the capability of robust optimization.

An important point to discuss also is that the IC holds
only in expectation, as shown in Theorem 4. The output of
the auction model loses the total optimality when we move
from divisible items to indivisible items, which is executed
in phase 2, i.e., Algorithm 2, step-20. This is because in
the case of indivisible items we are restricted to looking
for integral allocations of the items (the channels) to the
buyers (the JRC nodes). Instead of allocating the items
proportionally according to the allocation vector a∗ (which
is optimal), the channels are allocated to users randomly
where the allocation vector a∗ is regarded as a probability
vector. To the best of our knowledge, and based on a recent
report [45], there is no proven auction design for multi-item
multi-buyer scenario that guarantees total IC. In addition,
the adopted auction design in this paper is the only work
that can guarantee IC for divisible items due to the inherited
properties of robust optimization [40]. When we consider
uncertainty in the auction design, the IC will hold in expec-
tation for indivisible items (e.g., channels), which means that
in some cases it might not hold, but the solution is feasible
and solves the problem. Moreover, even if a malicious JRC
node knows that the IC might not hold in some cases, it
is hard to know exactly under which circumstances. This
makes the proposed auction design significantly useful.

4.4 Deterministic Mechanism for Channel Allocation

To evaluate the performance of RMCA, we propose a deter-
ministic mechanism for channel allocation based on RMCA.
The deterministic RMCA can be regarded simply as an
instance of the original RMCA in which the uncertainty set
is considered to contain only the realized bid vector. In other
words, by running the deterministic RMCA, the SSP directly
derives the solution to the multi-item multi-buyer auction
problem without consideration of any perturbation in the
submitted bids. In this settings, the warden is considered to
be at a fixed distance from the JRC node and the jammer, and
then the DEP is calculated by the JRC node as in (12) based
on that location3. We first reformulate the inner optimization
problem (20) by omitting the uncertainty of the valuations,
which results in the following linear problem:

max
x

∑

i∈N

∑

j∈M
(vij − cj)xij (25a)

s.t.
∑

i∈N
xij ≤ 1, ∀j ∈ M, (25b)

∑

j∈M
vijxij ≤ Bi, ∀i ∈ N , (25c)

x ≥ 0. (25d)

3. Later in the experiments section, we show the impact of this
assumption caused by not considering the uncertainty in the system.

The dual of problem (25) is then calculated as follows:

min
ω,φ

∑

j∈M
ωj +

∑

i∈N
φiBi

s.t. ωj + vijφi + cj ≥ vij , ∀i ∈ N ,∀j ∈ M

φi ≥ 0, ∀i ∈ N ,

ωj ≥ 0, ∀j ∈ M,

(26)

where ωj and φi are elements of ω and φ, respectively,
and are the duals corresponding to the first and second
constraints in (25).

To derive the prices, we need to solve the following
problem which is a reduced version of problem (25) where
we remove a JRC node k from the set of bidders and
calculate the social welfare:

max
x−k

∑

i∈N\{k}

∑

j∈M
(vij − cj)x

−k
ij (27a)

s.t.
∑

i∈N\{k}
x
−k
ij ≤ 1, ∀j ∈ M, (27b)

∑

j∈M
vijx

−k
ij ≤ Bi, ∀i ∈ N\{k}, (27c)

x
−k ≥ 0. (27d)

The proposed mechanism is presented in Algorithm 3.

Algorithm 3: Deterministic Mechanism for Channel
Allocation.

Input : Realized bid vector v = {vij}i∈N ,j∈M, and
budgets B1, . . . , BN .

Output: Allocation vector {a∗ij}i∈N ,j∈M, and
payment {p∗ij}i∈N ,j∈M

1 begin
2 x∗ ← Solve problem (25);
3 (ω∗, φ∗)← Solve problem (26);
4 foreach k ∈ N do
5 x∗−k ← Solve problem (27);
6 end
7 // Calculate reservation prices
8 foreach i ∈ N do
9 foreach j ∈ M do

10 r∗ij = ω∗
j + vijφ

∗
i + cj ;

11 end
12 end
13 // Calculate the payment vector
14 foreach k ∈ N do
15 pk =

∑

j∈M
x∗kjr

∗
kj +

∑

i∈N\{k}

∑

j∈M
(vij −

r∗ij)x
∗−k

ij , ∀k ∈ N ;

16 end
17 Allocate the jth channel to the ith JRC node with

probability x∗ij and charge pi/
∑

j∈M x∗ij to the
ith JRC node;

18 end
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5 NUMERICAL RESULTS

In this section, we evaluate the proposed auction mecha-
nisms for channel allocation in covert JRC systems. Specif-
ically, we are interested in analyzing the impact of uncer-
tainty about the warden’s location on the obtained social
welfare for both the robust and the deterministic auction
mechanisms. Again, we use the latter as a benchmark
scheme to evaluate the effectiveness of the former. We also
aim to investigate the impact of the number of channels
and JRC nodes on social welfare and computation time.
Our solution is implemented using Gurobi optimizer and
the python library RSOME [46] for robust optimization.
Experiments are run on a computer with Intel(R) Xeon(R)
CPU at 2.20GHz using 13 GB of RAM and operating on
Ubuntu 18.04 system.

We consider a square area of 200 m × 200 m where a
set of JRC nodes, friendly jammers and wardens are located
randomly under the coverage of the SSP. Channel costs for
the SSP are sampled from a normal distribution with mean
2$ and variance 1$. The budgets for JRC nodes are chosen
uniformly from the interval [1.5$, 5$]. As alluded before,
we consider that every JRC node has one friendly jammer
and one dedicated warden. Table 1 lists the other simulation
parameters.

TABLE 1: Simulation parameters

Parameter Value

Frequency 5.9GHz

Bandwidth 50MHz

pmax
i , pmax

g 10 dBm
Number of sub-carriers 10
Time-Bandwidth Prod-
uct

100

Radar Duty Factor 0.01

5.1 Impact of the jamming power on the covert rate
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Fig. 2: Impact of the jamming power on the channel capacity,
mutual information and detection error probability.

To validate our proposed valuation metrics for the covert
JRC system, we first conduct Monte Carlo simulations in
which we consider a receiver, a JRC node, a friendly jam-
mer and a warden that are located at qb = [7, 10, 19],
qi = [3, 8, 0], qj = [6, 21, 0] and qw = [3, 14, 4], respectively.
Figure 2 depicts the impact of the jamming power on the
CC, MI and DEP. As we increase the jamming power, the
DEP at the warden starts increasing only after the jamming

power is greater than 20 dBW. However, we observe that
the increase of jamming power causes a decrease of CC and
MI. Compared to the case without any jamming signals, to
achieve a 97% DEP at the warden, the CC and MI decrease
by 50% and 53%, respectively. This result suggests that there
is a trade-off between the performance and covertness of
the JRC system. Finally, to ensure the covertness of the JRC
system, the jamming power must be larger than a certain
threshold, i.e., 27 dBW as shown in Figure 2. Again, the
transmit powers of a JRC node and a friendly jammer can be
optimized accordingly, e.g., by using the method provided
in [15].

5.2 Uncertainty About Warden’s Location

We consider, as an example, the influence of uncertainty
about the warden’s location on the performance of the
system, which is illustrated in Figure 3. Specifically, during
the valuation of the spectrum, the JRC node calculates the
DEP at the warden based on its belief about the warden’s
location. However, the JRC node’s belief about the warden’s
location is not accurate and therefore the derived valuations
of the JRC nodes might be higher or lower than the real
valuations4. This implies that the JRC nodes or the SSP
might experience negative utilities, violating the IR property
of the optimal auction solution.

Warden

Location Uncertainty

JRC node

Jammer

WardenWarden

Fig. 3: An illustration of uncertainty about warden’s loca-
tion.

To analyze the impact of the uncertainty interval on the
social welfare of the system, in this experiment, we set
the number of channels to M = 10, the number of JRC
nodes to N = 20, and vary the uncertainty interval about
the warden’s location, represented in Figure 3 by the side
of a 2D square surrounding the warden. We observe from
Figure 4 that the social welfare obtained by the deterministic
auction algorithm is not affected by the variations in the
uncertainty set, while the social welfare obtained using
RMCA decreases as the uncertainty interval,i.e., box width,
increases and is lower than that of the deterministic auction
algorithm [23]. This is explained by the fact that RMCA
maximizes the social welfare for the worst-case uncertainty
set while the solution derived by the deterministic auction
mechanism does not depend on the uncertainty set and uses
the realized bids only.

4. Real valuations refer to the derived valuations if the location of the
warden is precisely known.
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Even though the social welfare obtained by the deter-
ministic auction algorithm is higher than that obtained by
RMCA, it comes with a high risk of not being able to
be achieved in reality. For instance, if the DEP at warden
calculated by the JRC nodes is higher than that if it is in
reality, the JRC nodes will have lower utility than expected
and can violate the IR property of optimal auctions, i.e.,
a negative utility. However, the RMCA algorithm is more
robust for variations of the DEP at warden which guarantees
the feasibility and optimality of the derived solution. The
gap between the social welfare obtained by RMCA and
the deterministic auction is the price of robustness, i.e., the
higher the conservation level about the warden’s location,
the higher the performance gap between RMCA and the
deterministic auction.
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Fig. 4: Impact of the uncertainty interval on social welfare.

To further illustrate the robustness of RMCA against
the deterministic auction for IR violation, we change the
location of the warden to a position where the DEP is lower
than expected, i.e., closer to the jammer, then calculate the
utility of one of the JRC nodes for both algorithms using
(13). First, we need to distinguish between the expected utility
and the true utility. The expected utility is the utility of a
JRC node based on its belief about the warden’s location,
while the true utility is based on the true location of the
warden. In Figure 5(a), we consider that the true location
of the warden is outside the uncertainty range defined by
the SSP (2 meters in our settings), and in Figure 5(b) we
consider that the warden’s location is within the uncertainty
range. From Figure 5, we observe that the expected utility
of the deterministic auction is higher than that of RMCA.
However, the true utility of the deterministic auction is neg-
ative, violating IR. For RMCA, the utility is not negative. In
fact, it is negative for RMCA only if the new location of the
warden is outside the range from which the uncertainty set
is derived. Interestingly, as observed from Figure 5(b), when
the true location of the warden is within the uncertainty
range of the SSP, the true utility derived by RMCA is much
higher than the expected utility. This is explained by the fact
that RMCA maximizes the worst-case social welfare, i.e.,
the derived optimal solution is based on the location of the
warden that has the lowest DEP. Note that the knowledge
about the violation of the IR property is not possible in real-
world scenarios as the location of the warden is usually
not known. Therefore, with careful choice of the uncertainty
set, the use of RMCA significantly minimizes the chances of
violation of the IR property.
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Fig. 5: Impact of the uncertainty interval on one of the
JRC node’s utility in cases where (a) the true location of
the warden is outside the uncertainty set, and (b) the true
location of the warden is within the uncertainty set.

5.3 Impact of mutual information, channel capacity and

DEP on the winner list

To understand the impact of CC, MI, and DEP at the warden
on the winner list, we consider the following scenario. We
set the number of channels to M = 3 and the number of
JRC nodes to N = 5. We then allow one JRC node (ID=5)
to change its location so as its valuation for the channels
increases based on (12). Figure 6(a) shows the derived
allocation probabilities using RMCA. We observe that the
JRC node 5 is allocated to channel 3 with probability one,
and zero for the other channels. However, after its average
bids, i.e., the average of the submitted bids by one JRC node
to all the channels, increases from 4.47 to 4.57, the allocation
probability for JRC node 5 to channel 3 shifts from 0 to 0.45
and then decreases again as the bids increase. To understand
this strange behavior, we show in Table 2, the submitted bids
for all the channels by all the JRC nodes before and after the
updated bid values. We observe that channel 3 is allocated to
JRC node 5 with probability 1 because it has a significantly
higher bid value than the other JRC nodes for this channel.
However, once the bids from the JRC node increase for
channel 1 and become the highest, the auction mechanism
allocates channel 1 to JRC node 5 with a probability of 45%.
If we keep increasing the submitted bids of JRC node 5,
the allocation probability to channel 1 decreases as shown
in Figure 6(a) which is due to the budget constraint, i.e.,
constraint (17b). Specifically, since the JRC node 5 is paying
more for channel 3, its ability to pay for channel 1 decreases,
and hence, the auction mechanism decreases its probability
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Fig. 6: Impact of bids of a JRC node on the winner list in
terms of (a) the allocation probability and (b) social welfare.

to obtain channel 1.

TABLE 2: Submitted bids

Channel
1

Channel
2

Channel
3

JRC node 1 4.17 3.11 3.69
JRC node 2 4.77 2.56 3.09
JRC node 3 4.42 4.20 3.12
JRC node 4 4.23 4.33 3.26
JRC node 5 4.75 4.07 4.58

JRC node 5 (varied) 4.85 4.17 4.68

We also observe from Figure 6(b) that as the bids from
JRC node 5 increase, the social welfare for both algorithms
increases. However, the social welfare obtained by RMCA
is lower than that obtained by the deterministic one, which
is similar to the results shown in Figure 4, i.e., the price
of robustness [20]. Interestingly, our simulations reveal that
for the interval-based uncertainty set, there is no difference
between RMCA and the deterministic auction algorithm in
terms of the allocation probabilities. This is explained by the
fact that for our interval-based uncertainty set, RMCA can
be regarded as a deterministic auction where the locations of
the wardens are fixed at the point with the lowest DEP in the
uncertainty box. Therefore, only social welfare is impacted
by the changes in bids but the allocation probabilities are
the same for both algorithms.

5.4 Computation time for different number of JRC

nodes and channels

Figure 7 shows the computation time for both of the al-
gorithms while varying the number of channels and JRC

nodes. We observe that the deterministic auction has almost
a constant computation time for different combinations
of the number of channels and JRC nodes. However, the
RMCA has a higher computation time for the same combi-
nations and increases polynomial with increases in the num-
ber of channels and JRC nodes. This is explained by the fact
that the RMCA solves a bilinear optimization problem, i.e.,
problem (20), which is NP-hard for general uncertainty sets
U . However, the computation time is still tractable which is
due to the use of the Generalized Benders Decomposition
algorithm that assures a polynomial computation time if the
uncertainty set has a polynomial number of extreme points
which is the case in our interval-based uncertainty set U .
Note that since the first phase of RMCA, i.e., RMCA.a, is
executed before bid submission, the computation time can
be further reduced if the set of participating JRC nodes is
the same as in the previous round of the auction.
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Fig. 7: Computation time for different number of JRC nodes
and channels.

5.5 Discussions

From the results obtained from Figure 6, we observe that
even though a JRC node increases its bid, its chances of get-
ting a channel decrease because of the budget constraint. In
this case, the SSP obtains much higher revenue but the JRC
node’s utility decreases with no additional benefit. In other
words, the JRC node can be allocated to the same number of
channels if it bids untruthfully, violating the IC property.
This case occurs because the developed mechanism, as
earlier shown, is only IC in expectation and not dominant
strategy incentive compatible (DSIC). However, obtaining
the minimum bid value by a JRC node is practically difficult
because the mechanism is probabilistic and the JRC node’s
objective is to maximize its chances of getting the channel.
Moreover, JRC nodes are not aware of other bids. Therefore,
the JRC nodes are incentivized to bid truthfully.

Another main observation from our results is the distinc-
tion between ex-ante IR and ex-poste IR. Ex-ante IR refers
to the case where the JRC node anticipates that it has a non-
negative expected utility before the winner list and prices
are determined, while ex-post IR refers to the case where the
JRC node is guaranteed to have a non-negative utility after
the winner list and prices are determined. The ex-post IR
property is certainly desired in our system. This is because
it represents the true utility that the JRC nodes get. Based
on (13), getting a negative utility implies that the JRC node
is paying more that it gets in benefits, which makes the JRC
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node reluctant to participate in such auctions in the future.
As earlier shown in Figure 5, the deterministic RMCA
has ex-ante IR but lacks ex-post IR. However, RMCA can
guarantee ex-post IR if the uncertainty set is well defined,
i.e., large enough to include all possible realization of the
bids. The deterministic RMCA cannot have this guarantee
even with large uncertainty sets.

Finally, the developed deterministic auction mechanism
opens an interesting research area to explore. Specifically,
the use of robust optimization tools has enabled us to derive
optimal solutions that have the properties of IC, IR and BF.
The power of robust optimization is that these properties are
smoothly incorporated in the optimization problem, making
the solution to the auction problem significantly easier than
existing complicated auction designs. This suggests that
we can use robust optimization for other auction problems
where we need to guarantee the properties of IC, IR and BF
and then, we might omit the discussion about uncertainty
by simply considering the uncertainty set to contain only
one item (as we have done in our deterministic auction).
Certainly, these suggestions needs further investigations
and validation as there might appear other challenges.

6 CONCLUSION

In this paper, a covert JRC system that can operate safely in
the existence of a watchful adversary has been developed.
The reliability of the channel allocation problem by the SSP
to the JRC nodes was addressed, where we proposed a
robust auction mechanism to maximize the social welfare
of the system. The proposed auction mechanism was shown
to be robust against perturbations in the submitted bids. We
implemented a deterministic auction mechanism to show
the benefits of robustness. Simulation results showed that
the robust auction mechanism yields better performance
compared to the deterministic auction mechanism in terms
of satisfaction of the optimal auction solution when there is
uncertainty about the submitted bids. For future works, we
would like to investigate the use of deep learning in auction
design and study what type of robustness it can provide.
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