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Abstract—With the advancement of network and computer
technologies, virtual cyberspace keeps evolving, and Metaverse
is the main representative. As an irreplaceable technology that
supports Metaverse, the sensing information transmission from
the physical world to Metaverse is vital. Inspired by emerging
semantic communication, in this paper, we propose a semantic
transmission framework for transmitting sensing information
from the physical world to Metaverse. Leveraging the in-depth
understanding of sensing information, we define the semantic
bases, through which the semantic encoding of sensing data
is achieved for the first time. Consequently, the amount of
sensing data that needs to be transmitted is dramatically reduced.
Unlike conventional methods that undergo data degradation
and require data recovery, our approach achieves the sensing
goal without data recovery while maintaining performance. To
further improve Metaverse service quality, we introduce contest
theory to create an incentive mechanism that motivates users to
upload data more frequently. Experimental results show that
the average data amount after semantic encoding is reduced
to about 27.87% of that before encoding, while ensuring the
sensing performance. Additionally, the proposed contest theoretic
based incentive mechanism increases the sum of data uploading
frequency by 27.47% compared to the uniform award scheme.

Index Terms—Semantic-aware transmission, contest theory,
Metaverse, wireless sensing

I. INTRODUCTION

In 1992, Neal Stephenson proposed the concept of Meta-
verse in its novel Snow Crash for the first time. As an
imagined virtual environment parallel to the physical world,
in Metaverse, users can build their own avatars, analogous
to their physical selves, to experience an alternate life [1].
Due to limited technology, resources, and other factors, at
that time, Metaverse appeared to exist only in fantasy, which
was out of reach. However, as time goes by, the economies
have thrived and various technologies have evolved, bringing
the once-imagined world into reality. In 2021, Meta (formerly
Facebook) released Horizon Worlds [2], a free virtual reality
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online video game with an integrated game creation system,
which allows users to build their own virtual characters and
explore the space around them within the confines of their
physical floor-space. In addition to giving people a better
understanding of Metaverse, similar releases also mark the
transformation of Metaverse’s from fantasy to reality.

As a novel type of Internet application and social form,
Metaverse’s transformation from a concept to reality is in-
extricably linked to innovative technologies. Digital twin-
based data replication, for example, supports continuous data
synchronization for Metaverse, that is, obtaining live data from
the physical world and transmitting it to Metaverse to keep it
updating in real time [3].The extended reality technologies
can render Metaverse and create an immersive experience for
users [4]. Moreover, blockchain technology, which is capable
of tightly integrating the virtual world and the real world
into the economic, social, and the identity system [5], is also
essential.

While eye-catching, the implementation of the above tech-
nologies rests on a fundamental premise, i.e., the data por-
traying the physical world can be effectively (accurately) and
efficiently (fast) transmitted to Metaverse, which is of great
challenge due to the large amount and variety of data. Taking
the popular wireless sensing as an example, a pair of sensing
devices can generate 3.072 megabytes of sensing data per
second1. Even, this number could grow further as sensing
granularity and the number of users increase, triggering not
only an unbearable burden on data transmission and storage
but also a non-negligible data processing delay, affecting the
quality of service (QoS) of the MSP. For example, equipment
providers may struggle to support high refresh rate and ren-
dering due to storage and computing overhead. Therefore, the
effective and efficient transmission of sensing data is a urgent
issue that must be addressed.

Semantic communication, which intends to extract the
meaning of data, filter out the irrelevant information, and trans-
mit it to the receiver, has natural advantages in reducing data
storage and transmission load and improving data transmission
efficiency [6]. Semantic communication is task-oriented, i.e.,
aims to convey the information relevant to the transmission
goal. In image transmission, for instance, the information car-

1Consider a transmitter equipped with one antenna sends signal with
bandwidth of 80 Mhz and packet transmission rate of 500 Hz, and the receiver
captures signal with three antennas, under the IEEE 802.11ac protocol. Then,
the amount of sensing data produced per second can reach 3 × 256 × 500
× 2 × 4 bytes, where 256 is the number of Orthogonal Frequency Division
Multiplexing (OFDM) subcarriers, 2 represents I and Q sampling.
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Fig. 1. The framework of the proposed system.

ried in the picture is essential, instead of the picture itself. With
this in mind, semantic communication extracts information
from the picture according to the transmission goal and gives
it to the receiver to realize higher transmission efficiency.
Therefore, if sensing data can be transmitted semantically, the
burden of data communication and storage would be greatly
reduced, laying the foundation for improving the QoS of MSP.

Inspired by this, in this paper, we propose a semantic-aware
sensing data transmission framework, including a contest
theory based incentive mechanism, to deliver the wireless
sensing data, i.e., channel frequency response (CFR) power,
from the physical world to Metaverse. As shown by the
proposed framework in Fig. 1, the transmitter focuses on
data semantic coding and transmitting, the receiver works on
data receiving, human activity recognition, and CFR power
recovery to support other applications, while the contest theory
based mechanism concentrates on encouraging the transmitter
to upload sensing data at a higher frequency via award setting.
Through such a collaboration, the amount of sensing data
transmitted each time decreases significantly while the data
upload frequency increases remarkably, providing support for
MSP to further improve its QoS. The contributions of this
paper are summarized as follows:

• We define a novel semantic base to encode the informa-
tion of human activity in the CFR. On this basis, the
semantic features are further extracted and transmitted to
receiver. Unlike transmitting the original CFR, our result
shows the average data amount after semantic encoding
is compressed to about 27.87% of that before encoding.

• We propose a semantic space, in which receiver realizes
human activity recognition via the received semantic
features, without the requirement for recovering the entire
CFR power. We build an IEEE 802.11ac protocol based
platform and collect data in real-world scenarios to verify
the effectiveness of semantic coding and activity recog-
nition in semantic space.

• We design a contest theory based strategy to incentivise
the uploading of sensing data, to further improve the
users experience in Metaverse. We derive the optimal
award setting that maximises the total data uploading
frequency, which directly affects the refresh rate of MSP,

and investigate the advantages of semantic encoding in
the contest. Numerical analysis proves and demonstrates
the effectiveness of our proposed strategy.

II. RELATED WORK

This section investigates the major works related to the
system proposed in this paper.

A. Compressed Sensing

The channel state information (CSI) compression has always
been a major topic in mobile wireless network. Previous
attempts [7]–[9] use quantization and general techniques to
compress the CSI. For example, the authors in [8] quantize
CSI from time, frequency and numerical values domains, and
adapt compression intensity to balance the capacity loss and
overhead reduction. Other works [10], [11] reduce the request
rate and amount of CSI to achieve the compression. The
authors in [10] evaluate the required CSI repetition rate for
multiple-input multiple-out put (MIMO) systems and provide
a theoretical support for reducing CSI transmission in time
domain. Besides, the sparse nature of the wireless channel is
always used to underpin CSI compression [12], [13]. The au-
thors in [13] analyze CSI compression via the sparsity obtained
by modeling feedback distortion and rate loss. CsiNet [14]
learns a transformation from CSI to a near-optimal number
of representations via deep learning to realize CSI sensing
and recovery. Moreover, CsiNet-LSTM [15] improves the
CSI recovery quality and trade-off between compression ratio
and complexity by learning spatial structures from training
samples.

B. Semantic Communications

The semantic communication was first introduced in [16],
then researchers present the semantic information theory [17]
and a universal semantic communication model [18]. Follow-
ing that, the authors in [19] develop a compression theory at
the semantic level to reduce the amount of data. The authors
in [20] use the semantic redundancy and ambiguity to achieve
compression. Using AI techniques, semantic communication is
further developed both in technology and application. DeepSC
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[21] utilizes Transformer and transfer learning to maximize
the capacity and minimize the errors in sentence meaning
recovery, so as to perform better when the signal-to-noise
ratio (SNR) is poor. Through the adversarial training and
masked auto-encoder, the authors in [22] present the first
end-to-end semantic communication system to improve the
performance against noise. A Transformer based semantic
communication system is presented in [23], which introduces
a circulation mechanism to transmit sentences more flexibly.
Besides, semantic transmission of speech and images has also
received extensive attention [24], [25].

C. Contest Theory

The contest is a game, in which contestants spend resources
to win prizes with some probability. This definition can be
applied to many situations to solve different problems. Early
attempts, such as rent-seeking model [26], all-pay auction [27],
and others [28], [29], focused on economic problems. Besides
economics, contest theory also plays a significant role in other
areas. The authors in [30] use contest to balance request and
service among users, so as to solve the problem of low willing-
ness of service in a service exchange application. In [31], the
authors use the contest theory in crowd sourcing to study the
reward distribution strategies and estimate users’ capabilities
via the observed competition results. The authors in [32]
show requester can maximize contributions by rewarding only
the top contributors, whereas the low-capability participants
become risk-averse and are unwilling to join the contests.
To handle this problem, the following work [33] introduces
a lottery mechanism based on Tullock contest, so that every
player has a positive chance of winning if they participate.

Motivated by the above studies, we design a semantic
transmission system for wireless sensing data. Our system
uses the proposed semantic encoding to reduce the amount
of sensing data that needs to be transmitted. Besides, we
propose a competition based mechanism to stimulate the data
upload frequency, which further improves the system overall
performance.

III. SYSTEM OVERVIEW

A. Wireless Sensing in Physical World

As shown in Fig. 1, without loss of generality, we use
the activity recognition of users in virtual conference service
as an example to illustrate our work. In the physical world,
smart devices sense the attendee by transmitting and receiving
signals and perform semantic encoding and other processing
on the obtained sensing data. Here, the data refers to the CFR
that is widely available in existing wireless communication
systems and its power describes the physical channel fluctua-
tion induced by attendee activity. Therefore, the CFR power,
dented as |H (f, t)|2, where f and t represent the frequency
and time of CFR extraction, respectively, holds the potential
for the pervasive sensing in the indoor environment [34]. Once
the CFR obtained, the transmitter needs to process it. However,
there are two issues need to be addressed.
• Due to the limited storage and computing resources,

sensing devices need to send the |H (f, t)|2 via the

transmitter module to the receiver, e.g., edge cloud nodes
or fog nodes close to the sensing devices, for activity
recognition. However, as mentioned previous, the sensing
incurs a large amount of data, resulting in significant
communication overheads.

• One receiver needs to serve multiple transmitters. There-
fore, if all transmitter upload their data simultaneously to
the receiver, the receiver will face significant costs due to
the high demands on processing power and storage space.

These issues motivate us to develop a simple but effective
semantic encoder to reduce the amount of data and the process-
ing burden of receiver while maintaining activity recognition
accuracy.

B. Semantic-aware Encoding at Transmitter

In this paper we focus on extracting and preserving semantic
information related to attendee activity from CFR power,
which allows us to transmit and store less data. Recall that the
sinusoidal wave, the most natural representation of a signal,
can be stored with only three parameters, i.e., amplitude,
frequency, and initial phase. Although an infinite number of
sinusoidal waves may be required to accurately describe a
signal, we show later that a few waves are sufficient to main-
tain the CFR semantic properties required for human activity
recognition. Therefore, we define semantic base as the sinu-
soidal wave, and semantic features as the corresponding pa-
rameters, including amplitude, frequency, and phase. Through
the semantic bases, CFR can be semantically encoded. The
theoretical support is presented in Section IV-A. Given this, we
consider the case that one receiver with NR antennas serves
NT transmitters, as shown in Fig. 1. Each transmitter only
needs to transmit semantic features to the receiver through
the wireless channel, after CFR power calculation, semantic
encoding, and channel encoding. By doing so, the transmission
and storage resources are greatly reduced.

C. Activity Recognition at Receiver with Contest Incentive

With respect to the transmitter, the receiver first conducts
channel decoding to extract semantic features from the re-
ceived signal. The features are directly related to the activities
of the conference attendees. Therefore, the k-nearest neighbor
(kNN) is applied to classify the semantic features in semantic
space (detailed in Section IV-C) to achieve activity recognition.
After that, the recognition results are fed to the MSP to com-
plete the virtual conference function in Metaverse. Besides,
receiver can restore the entire CFR power by combining sine
waves described by the semantic features, so as to support
other services in Metaverse.

The receiver serves multiple transmitters at the same time,
each of which has different sensing, processing, and data
transmission capabilities. As mentioned previously, the data
transmission rate directly influences the refresh rate and ren-
dering of the MSP, which further affects the user experience.
Therefore, we introduce a reward mechanism (in Section IV-
D) for transmitters of the service framework according to the
contest theory. To win the reward, each transmitter needs to
upload sensing data with a higher frequency. Therefore, with
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this incentive, the overall rendering and refresh effects at the
MSP are boosted, which further enhances the user experience.

IV. SYSTEM MODEL

A. Wireless Sensing and Semantic-Aware Encoding

In this part, the theoretical support of semantic-aware encod-
ing is introduced. As the framework shown in Fig. 1, various
wireless IoT devices in the physical world are used to sense the
conference attendee by sending and receiving wireless signals.
Since the surrounding objects, the transmitted signal reaches
at the receiver via multiple propagation paths. Assuming there
are L different propagation paths, then the CFR of the wireless
channel can be denoted as

H (f, t) =

L∑
l=1

al (f, t) exp

(
−j2πf dl (t)

c

)
× exp (−j2π (f (ε1 + ε2) + ε3)) , (1)

where al (f, t) represents the attenuation and the initial phase
of the l-th propagation path, exp (−j2πfdl (t)/c) is the phase
introduced by propagation delay corresponding to the distance
dl (t), c is the signal propagation speed in the air, and ε1, ε2,
and ε3 are the time offset introduced by the symbol timing
offset (STO), sampling frequency offset (SFO), and carrier
frequency offset (CFO), respectively. As shown in (1), the
change of dl (t) triggers a phase shift to the signal correspond-
ing to the l-th propagation path. In the indoor environment, the
propagation path length of reflections induced by static objects,
such as walls and furniture, are constant, while the path length
of the conference attendee induced reflection varies with time.
Consequently, the propagation paths can be categorized into
static and dynamic parts. Leveraging this fact, we can rewrite
(1) as

H (f, t) = exp (−j2πε)× (Hs (f, t) +Hd (f, t)) , (2)

where ε = f (ε1 + ε2) + ε3, constant vector Hs (f, t) is the
sum of static reflections, and

Hd (f, t) =
∑
ld∈Pd

ald (f, t) exp (−j2πfdld (t)/c) (3)

is the sum of dynamic reflections, Pd is the set of the dynamic
reflections. Without loss of generality, we can assume that the
ld-th propagation path is introduced by the conference attendee
and path length changes at a constant rate of vk in a short
period of time. Then, we have

Hd (f, t) =
∑
ld∈Pd

ald (f, t) exp (−j2πf (dld (0) + vkt)/c) ,

(4)

where dld (0) is the initial path length of attendee induced
reflection. Apparently, the phase of the CFR contains infor-
mation about vk, which has been proven to be directly related
to the activity of the human body [34]. Due to the phase
error ε = f (ε1 + ε2) + ε3, it is hard to directly calculate vk
from the CFR. Fortunately, besides the phase, the vk manifests
itself via the power change of CFR, which can be illustrated
via the example in Fig. 2. One can see from the figure that
the overall CFR power undergoes a significant decrease after
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Fig. 2. The impact of the Hd phase on the overall CFR power.

Hd shift to H ′d, as evidenced by the shortening of CFR’ in
comparison with CFR, even if the power remains unchanged.
Therefore, we calculate the CFR power and determine the
semantic base by analyzing the relationship between power
and vk. Concretely, according to the (2), (3), and (4), we have

|H (f, t)|2 = HD +HS +HDC , (5)

where

HD =
∑
ld∈Pd

2 |Hs (f, t) ald (f, t)|

× cos

(
f

c
(2πvkt+ 2πdld (0)) + ϕsld

)
(6)

is the cross-term,

HS =
∑

ld,k∈Pd,ld 6=k

2 |ald (f, t) ak (f, t)|

×cos

(
f

c
2π ((vk−vl) t+dld(0)−dk(0)) + ϕldk

)
, (7)

is the self-term,

HDC =
∑
ld∈Pd

|ald (f, t)|2 + |Hs (f, t)|2, (8)

is the DC-term, and ϕsld and ϕldk are the initial phase. From
the above derivation, the following conclusions can be drawn.

• The power of CFR consists of three parts. Sorted by the
power in a descending order, these components are DC
term, cross-term, and self-term. Excepting the DC term,
the rest two terms are composed of multiple sinusoidal
waves.

• The frequencies of the sinusoidal waves that make up
cross-term and self-term are determined by the vk, which,
as mentioned previously, is directly related to the activity
of human body. Moreover, the overall initial phases of
these two terms are constants, which are determined by
dld (0), ϕsld , dk (0), and ϕldk.

From the foregoing derivation and conclusions, it can be
seen that the CFR power of different activities can be rep-
resented by the sum of a constant component and a set of
sinusoidal waves.

According to these observation, we first employ principal
component analysis (PCA) to denoise the obtained CFR power
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Algorithm 1 Semantic-aware encoding.
Input: The original CFR obtained by sensing the physical

world
Output: The amplitude, frequency, and initial phase of

semantic basis.
1: #(Iteration)=0; order=0;
2: The CFR power calculation |H (f, t)|2i , i = 1, . . . , I
3: The PCA based denoising and HDC removal
4: Fast Fourier transform based order estimation and updat-

ing
5: Initializing A, F , and θ
6: Levenberg-Marquardt (LM) based fitting:

min
A,F,θ

I∑
i=1

[
|H (f, t)|2i − f (A,F, θ)

]2
7: Fitting error calculation
8: while Fitting error > T1 do
9: order =order +1 and #(Iteration)=

#(Iteration)+1
10: Updating A, F , and θ
11: LM based fitting
12: Fitting error updating
13: if #(Iteration) > T2 then
14: break
15: return [Ar, Fr, θr] , r = 1 : order.

2 and eliminate the constant component by subtracting the
mean of the power3. After that, a series of sinusoidal waves
with different amplitudes, frequencies, and initial phases are
selected to fit the CFR power to achieve semantic encoding.
Here, the selected waves are defined as the semantic bases
of the CFR and the corresponding wave parameters are the
semantic features. This semantic encoding process can be
achieved via the Levenberg-Marquardt (LM) algorithm [35]
and we summarize it in Algorithm 1, where #(Iteration)
denotes the number of iterations, order means the number of
bases required for semantic encoding, A, F , and θ represent
the amplitude, frequency, and initial phase of the semantic
bases, respectively, T1 is the fitting error threshold, T2 is the
threshold for the number of iterations, |H (f, t)|2i is the i-th
element of CFR power, f(A,F, θ)i is the i-th element of fitted
value, and I is length of CFR for semantic encoding.

Taking the power of CSI (a sampled version of CFR col-
lected via the Nexmon toolkit [36]) for two common activities,
including walking and sitting, as an example, Fig. 3 presents
the semantic encoding results. From the original CSI power
and encoding results, one can see that walking contains richer
components than sitting. Thus, eight semantic bases are used to
encode it and the corresponding the semantic features, include
the amplitude, frequency, as well as the initial phase, are

2There are two main reasons for choosing PCA. First, the CSI contains
burst noise introduced by internal state transitions. For cancelling such noise,
PCA outperforms the traditional filtering-based algorithms [34]. Second,
through matrix decomposition and mapping, PCA can convert the CFR matrix
(corresponding to the subcarrier and time domain) into vectors, reducing
the data dimension, while cancelling the noise and preserving the signal
characteristics.

3The DC term is a constant that does not contain any activity-related
information, so it can be removed by subtracting the mean of the CFR power.

shown as f1 to f8 in the figures. Relatively speaking, sitting
down holds fewer components than walking. Therefore, six
semantic bases are sufficient to realize semantic encoding, and
the encoding outcome looks more impressive than walking.

So far, the rationality of the semantic bases and the fea-
sibility of semantic encoding are proved by the theoretical
derivation and the encoding examples. Clearly, semantic en-
coding reduces the amount of data that needs to be transmitted
each time, while preserving the activity related information,
providing more flexibility in increasing data transmission
frequency and activity recognition. To translate the gains
obtained in semantic encoding into QoS improvement, we
define the semantic space, in which the activity recognition is
realized without reconstructing the CFR power. Moreover, an
incentive mechanism is proposed in Section IV-C to increase
the transmission frequency, providing support for boosting the
refresh rate for MSP.

B. Wireless Network

Note that the wireless environment between the transmitter
and receiver could impact the performance of the system. For
example, the bit error probability (BEP) caused by wireless
transmission can affect the accuracy of the activity recogni-
tion. To investigate this, we consider a generalised network
architecture, where the distance between the transmitter and
the receiver is Dw, and the large-scale path loss exponent
is αw. Considering the small-scale shadow fading and multi-
path fading, a generalized small-scale fading model is used to
characterize the fluctuations in the amplitude of the transmitted
signal. Since the wireless environment is dynamic and volatile,
we use H-fading channel model [37], which includes most of
typical models such as Rayleigh, Nakagami-m, Weibull, α-µ,
N*Nakagami-m, generalized K-fading, and Weibull/gamma
fading as its special cases. Specifically, the H-fading can be
converted to the various commonly used small-scale fading
models as [38, Table 1]. The PDF of H-fading is given as
[38]

fX (x) = κHm,n
p,q

[
λx

∣∣∣∣ (ai, Ai)i=1:p

(bl, Bl)l=1:q

]
(9)

where H m,n
p,q (·) is the Fox’s H-function [39, eq. (1.2)],

λ > 0 and κ are the constants and satisfy
∫∞

0
fX (x) dx =

1, (ai, Ai)i=1:p means (ai, Ai)i=1:p= (a1, A1) , . . . , (ap, Ap).
Assuming that maximum-ratio combining reception in the nth

transmitter [40], the output SNR at the receiver, i.e., Zn, can
be expressed as the sum of the individual branches [41]. Thus,
we have Zn = X1 + · · · + XNR

, where Xj (j = 1, . . . , NR)
denotes the SNR between the transmitter and the jth antenna
in the receiver. The probability density function (PDF) and
cumulative distribution function (CDF) of Zn are derived as
in [41, eq. (8)] and [41, eq. (9)], respectively.

1) Data Rate Evaluation: The ergodic data rate (or Shan-
non capacity) for the nth transmitter, which is known to be the
maximum data rate that the channel can support, is defined as

Cn = Bn

∫ ∞
0

log2(1 + γ)fZn(γ)dγ, (10)
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Fig. 3. An example of semantic encoding for walking and sitting.

where Bn is the available channel bandwidth of the nth

transmitter. By substituting [41, eq. (8)] into (10), the data
rate can be derived as [41, eq. (28)].

2) Bit Error Rate (BER) Evaluation: The average BEP for
the nth transmitter under a variety of modulation formats is
given by [42]

En =

∫ ∞
0

Γ(τ2, τ1γ)

2Γ(τ2)
fZn (γ) dγ, (11)

where τ1 and τ2 are modulation-specific parameters for several
modulation and detection scheme combinations, respectively,
Γ(τ2, τ1γ)/2Γ(τ2) represents the conditional bit-error proba-
bility, different modulation and detection scheme combinations
with corresponding parameters τ1 and τ2 are shown in Table I,
and Γ(·, ·) denotes the upper incomplete Gamma function [43,
eq. (8.350.2)]. Substituting [41, eq. (8)] into (11), we can
obtain the close-form of BER as [41, eq. (25)]. With the
modeling ability of the H fading model for various channel
environments, we analyze the impact of bit errors on semantic
information transmission in Section V.

Assuming that the number of bits generated by wireless
sensing for each time is D, then the time required for the
nth transmitter to send the sensing data to receiver is D/Cn,
and the average number of error bits is EnD. The amount of
raw data generated by wireless sensing is relatively large as
discussed above. Fortunately, the proposed semantic encoding

TABLE I
DIFFERENT MODULATION AND DETECTION SCHEME COMBINATIONS WITH

CORRESPONDING PARAMETERS τ1 AND τ2 .

τ1 τ2 Modulation & Detection Scheme

0.5 0.5
Orthogonal coherent binary frequency-shift

keying (BFSK) scheme

1 0.5
Antipodal coherent binary phase-shift keying

(BPSK) scheme
0.5 1 Orthogonal non-coherent BFSK scheme

1 1
Antipodal differentially coherent BPSK (DPSK)

scheme

greatly reduces the amount of data, enabling it to sense and
upload data to complete recognition multiple times per second,
which improves synchronization between the physical world
and Metaverse.

C. Semantic-Aware Activity Recognition

After receiving the signal, the receiver conducts channel
decoding to obtain the semantic features, including the ampli-
tude, frequency, and initial phase of the sine waves, through
which the original CFR power can be recovered. Leveraging
different signal processing and feature extraction algorithms,
coupled with statistical analysis and machine learning meth-
ods, many systems can realize activity recognition based on
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Fig. 4. The distribution of semantic features in defined 3D semantic space.

the CFR power [44]. Unlike them, in this work transmitter
sends semantic features related to activity to the receiver.
Therefore, we define the three dimensional (3D) semantic
space, in which the activity recognition is realized by directly
classifying the received semantic features, without recovering
CFR power. Specifically, the three dimensions of the defined
semantic space are x = frequency/# (bases)

y = In (amplitude/# (bases))
z = # (bases)

(12)

where #(basis) is the number of semantic bases employed for
semantic encoding4. Taking the signal in Fig. 3 as an example,
we map the semantic features into 3D semantic space and
obtain the averages corresponding to both activities, the results
are shown in Fig. 4. It is clear that the bases of different
activities are distributed in different parts of the 3D semantic
space, creating favorable conditions for realizing recognition
in the semantic space. This can be interpreted by the fact that
different activities trigger different numbers of reflections with
varying amplitude and frequency. We collect more sets of data
for falling, walking, and sitting down in real-world scenarios
and map bases into the 3D semantic space. The distribution of
semantic features and corresponding averages, in 3D semantic
space, are shown in Fig. 5 and Fig. 6, respectively, which
further verifies the feasibility of achieving activity recognition
in the 3D semantic space.

According to this observation, the kNN classifier is applied
to classify semantic features in the semantic space. This pro-
cess consists of two steps: offline training data collection and
online recognition. During the offline phase, first, multiple sets
of training data corresponding to each activity are collected
to extract semantic features. Then, the features are mapped
into the semantic space to obtain multiple averages for each
activity. Here, the obtained averages are denoted as

T= {T1, . . . , Tm, . . . , TM} , (13)

where Tm = (xm, ym, zm, lm), xm, ym, and zm are the co-

4According to previous derivation, one can see that the initial phase of
HD are determined by dld (0) and ϕsld , which contain no activity-related
information. Therefore, the initial phase is not considered in the construction
of the semantic space.

Algorithm 2 Activity recognition in semantic space.
Input:The labeled training data, test data, K

Output: The activity recognition result.
1: for each transmission link do
2: for m=1:M do
3: Calculating the distance between the test data and
Tm in semantic space

4: Sort the obtained distances in an ascending order
5: Determine Nk based on K and sorted distances
6: Activity recognition of each link: l =

arg max
Ak

∑
Tm∈Nk

I (lm = Ak)

7: Voting to obtain the final recognition result

ordinates of averages in semantic space, lm ∈ {A1, . . . , AK}
is the label. In this way, we can construct a cluster containing
multiple labeled averages for each activity in 3D semantic
space. In the online classification process, the test average
of the to-be-classified data in the 3D semantic space is
first obtained. After that, K training averages closest to the
test average in the labeled averages are identified and the
neighborhood covering the K training averages is determined
as Nk. Finally, the activity recognition can be realized via

l = arg max
Ak

∑
Tm∈Nk

I (lm = Ak), (14)

where I (·) is the indicator function and k = 1, 2, · · · ,K.
Considering the limited sensing capacity of a single trans-

mission link and the possibility of numerous smart devices
participating in physical world sensing, we combine the recog-
nition results from multiple links via voting to further boost
the performance. As Fig. 7 illustrates, each link collects and
processes the sensing data independently and transmits it to
receiver for recognition and voting. Thereafter, the one with
the largest number of votes is selected as the final recognition
result5 and fed to MSP for further processing. The activity
recognition process in 3D semantic space is summarized in
Algorithm 2.

D. Contest Theory-based Sensing Data Market

To further enhance the user experience in Metaverse, we
design an effective incentive mechanism for the sensing data
market to promote transmitters uploading data more fre-
quently. Concretely, under an available bonus amount, our goal
is not to promote a specific transmitter to achieve the best
possible performance or allocate network resource fairly, but
to encourage all transmitters to redouble their efforts. Thus,
unlike auction theory, contract theory and game theory, which
are already widely used in wireless communication networks,
a suitable solution here is to use the bonus to host a contest
among transmitters. Here, the contest is defined as a game, in

5Due to transmission noise, packet loss or other causes, multiple activities
may receive the same number of votes. For this case, we have two solutions.
First, among the activities with the same number of votes, if one of them
is the same as the previous recognition result, then this one is picked as the
output. Otherwise, we randomly select one from them as the output.
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Fig. 6. The distribution of features averages in the 3D semantic space.
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which contestants, i.e., the transmitters, must exert irreversible
effort to win awards, which are determined according to the
quality of the outputs. In this section, we use the contest
theory to examine the payoff of transmitters and the payment
of receiver [45].

1) Effort, Capability, and Awards: In the context of wire-
less sensing in Metaverse, contestants are transmitters and
their efforts can be regarded as the frequencies of uploading
sensing data, i.e., let fn denote the frequency that the nth

transmitter sends the sensing data to the receiver for activity
recognition in a time period T . Thus, the cost function for
the nth transmitter can be expressed as a twice differentiable
function, i.e., Cn (an, fn), that satisfies [45]

∂Cn (an, fn)

∂fn
> 0,

∂Cn (an, fn)

∂an
< 0,

∂2Cn (an, fn)

∂an∂fn
< 0,

(15)

where an denotes the capability of the nth transmitter. The last
inequality in (15) implies that the more capable a contestant
is, the easier it is to increase the output.

The capability of transmitter can be measured in terms of
the time that it takes to perform each upload. Specifically,
a more capable transmitter can achieve faster data uploads
because of better channel conditions and faster processing
speed. Let TP and T (S)

P denote the time required for receiver
to perform activity recognition using the original sensing data
and semantic basis, respectively, and TS represents the time
required to obtain the semantic bases from the sensing data,
and an can be expressed as

an =

(
S (D)

Cn
+ TS + T

(S)
P

)−1

=

(
DS

Cn
+ TS + T

(S)
P

)−1

,

(16)

where S is the semantic-aware encoding operator, and S (D)
is the bit amount of semantic bases for one wireless sensing.

For a given upload frequency, a more capable transmit-
ter can upload faster, resulting in a smaller cost. Taking
(15) into consideration, the cost function can be denoted as
Cn (an, fn) = fn/an. Sorting NT transmitters in descending
order according to efforts to obtain {f1, . . . , fNT

}, then the
award that the nth transmitter receives can be denoted as rn
(1 ≤ n ≤ NA ≤ NT ), where NA is the number of awards,
r1 ≥ r2 ≥ · · · ≥ rNA

, and rn = 0 when n > NA. On this
basis, all the awards are summed up to obtain the total amount

that receiver pays, which is expressed as rT =
NA∑
n=1

rn.
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2) Optimal Effort Analysis: The utility of the nth transmit-
ter participating in the contest can be expressed as

π (an, fn)

=

{
rm − Cn (an, fn), if the transmitter is ranked in mth,
−Cn (an, fn), if the transmitter is not awarded.

(17)

Then, the expectation of the utility can be derived as follows:

E [π (an, fn)] = R (fn)− Cn (an, fn) , (18)

where R (fn) denotes the expectation of the award that the
nth transmitter receives. Considering that all transmitters are
rational, the following lemma is first derived

Lemma 1. The more capable the transmitter is, the more effort
is exerted in the contest. In other words, a transmitter with
a higher transmission rate and a shorter activity recognition
processing time uploads sensor data more frequently.

Proof: Please refer to Appendix A.
We consider that the CDF of capability in the population

is represented by a continuous function G (a), and each
transmitter knows its own capability, but has only probabilistic
estimates of the capabilities of fellow potential contestants,
i.e., other transmitters. Assuming the transmitter with capabil-
ity an chooses effort fn and its remuneration consists solely
of its prize, so that a transmitter with capability an chooses
to participate in the contest only if its surplus, R (an, y (an)),
is no less than the opportunity cost of participation.

According to Lemma 1, a transmitter with greater capability
will choose a higher level of effort. Hence, the probability
that a transmitter with capability a obtains the jth highest
prize is simply the probability that it has the jth highest
capability among the NT potential transmitters. On this basis,
the expected award won by the nth transmitter with capability
an is

R (an) =

NA∑
m=1

u (rm)

(
NT − 1
m− 1

)
GNT−m (an) (1− G (an))

m−1
,

(19)
where u (rm) is the expected utility of the mth award decided
by the risk preference [46]. Specifically, u (rm) = rm denotes
risk neutral and u (rm) = ln (rm) means risk averse.

A transmitter does not know the capabilities of other trans-
mitters, but it will estimate the distribution of the capabilities,
i.e., GX (x). Recall that capability is a function of data rate,
semantic encoding time, and activity recognition time, here
the transmitter will estimate its expected utility in the contest
by assuming that the data rate of other transmitters obeys a
uniform distribution6. To obtain a close-form expression of
R (an), the G (an) is analyzed first.

Lemma 2. From the nth transmitter’s point of view, the
probability that the capabilities of other transmitters is less

6Here the uniform distribution is considered and, in fact, the proposed
analysis method can be easily extended to other distributions.

than an, i.e., G (an), is

G (an) =

{
1
∆

anDS

1−anTS−anT (S)
P

, Condition 1

0, otherwise,
(20)

where Condition 1 is

0< an <

(
DS

∆
+ TS + T

(S)
P

)−1

. (21)

Proof: Please refer to Appendix B.
With the Lemma 2, the optimal effort for each transmitter

is obtained as in Theorem 1.

Theorem 1. The optimal effort of each transmitter is given as

f∗n = anR (an)−
NA∑
m=1

u (rm) anHf

Γ(NT − 1)

(
NT − 1
m− 1

)(
DS

∆

)NT−m

,

(22)
where Hf is derived as (23), shown at the bottom of the next
page.

Proof: Please refer to Appendix C.
3) Optimal Awards Analysis: The receiver adjusts the

awards to maximize the sum of transmitter efforts by solving

max
NA,r1,...,rNA

NT∑
n=1

f∗n

s.t.
NA∑
m=1

rm 6 r.

(24)

With the help of Theorem 1, we can rewrite f∗n as

f∗n =

NA∑
m=1

u (rm)Fn
(
an, NT ,m,DS , TS , T

(S)
P ,∆

)
. (25)

Theorem 2. By solving the optimization problem (24), we can
obtain the optimal award setting as r1 = r and r2 = · · · =
rNT

= 0, when the transmitters are risk neutral.

Proof: Please refer to Appendix D

Theorem 3. If the transmitters are risk averse, we can obtain
the optimal award setting as follows:

r` =

r
NT∑
n=1
F
(
an, NT , `,DS , TS , T

(S)
P ,∆

)
NA∑
m=1

NT∑
n=1
F
(
an, NT ,m,DS , TS , T

(S)
P ,∆

) , (26)

where ` = 1, . . . , NA.

Proof: Please refer to Appendix E.

V. NUMERICAL ANALYSIS

In this section, we first introduce the experimental configu-
rations. Then, based on the collected data, the effectiveness of
activity recognition in semantic space is verified. After that,
the impact of wireless transmission on recognition accuracy
is simulated. Finally, the effect of semantic transmission and
incentive mechanisms on the overall system is investigated.

A. Experimental Platform, Scenario, and Data Collection
An IEEE 802.11ac protocol based experimental platform

is built to collect CSI in real-world scenarios to validate the
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activity recognition in semantic space. The specific hardware
and test scenario are shown in Fig. 8. The test scenario is
a 7.8m × 4.5m office room with different furniture, such as
conference table, chairs, computers, and bookcases. Inside the
office room, we placed a transmitter and 3 receivers, denoted
as Tx and Rx1-Rx3, to transmit and receive wireless signals,
respectively. The experimental equipment is an access point
(AP) equipped with a BCM4366C0 chip and the Nexmon
toolbox [36], as shown on the right side of Fig. 8. During the
data collection process, the frequency of the signal is set to
5.805 GHz, the signal bandwidth is 80 MHz, and the default
transmission rate of the CSI data packet is 600 Hz. While
each AP has multiple antennas, the Tx and Rx are controlled
to operate via one antenna.

B. Performance Evaluation

The activity recognition in semantic space. We collected
measurement data of four activities and evaluated the recogni-
tion performance in semantic space. To demonstrate the effec-
tiveness of our framework, we compare it with CRAM [34]
and the results are shown in Fig. 9. First, the Fig. 9 (a)
shows the performance of the both systems improves with the
increase of the sampling rate and the general trend is nearly
identical, as presented by the partially enlarged result. The
reason is that the reduce of packet transmission rate makes
the obtained original CSI unable to fully describe the high-
frequency features, affecting the recognition performance.
Second, the recognition accuracy in semantic space is close
to that of CRAM. As an example, Fig. 9 (b) indicates that
for walking, the maximum recognition accuracy difference
between two systems is 0.0365, and the minimum difference
is 0.0057. For other activities, the difference in recognition
accuracy is smaller. The results reveal that the performance of
activity recognition in semantic space is comparable to that of
CRAM, verifying the effectiveness of semantic encoding, as
well as activity recognition in semantic space.

The impact of wireless transmission on recognition accu-
racy. We simulated the wireless transmission of the semantic
feature to analyze the impact of transmission on activity recog-
nition. Figure 10 (a) gives the activity recognition accuracy in
semantic space under different small-scale fading conditions
obtained using the H-fading model in Section IV-B. One can
see that the BER of Rayleigh is larger than the Nakagami for
different transmit power. Meanwhile, for Nakagami, increasing
the order can reduce the BER. Therefore, as denoted by black
lines, the Nakagami-10 has the highest recognition accuracy,
followed by Nakagami-5, then Nakagami-2, and the lowest
is Rayleigh. The reason is that smaller order in the Nakagami
fading means stronger multipath effect. In addition, increasing
the transmit power can reduce the BER, thereby improving
the recognition accuracy. When the transmit power reaches

25 dBw, the recognition accuracy of Nakagami-10 is 0.8831,
which is comparable to 0.8953 of recognition in semantic
space without transmission and 0.9010 of CRAM, further
demonstrating the feasibility of semantic encoding and activity
recognition in semantic space.

Besides small-scale fading, the impact of modulation meth-
ods on the recognition accuracy is analyzed under the Rayleigh
fading condition, and the results are shown in Fig. 10 (b).
With the same transmit power, the BPSK has the lowest BER,
then BFSK, followed by DPSK, and orthogonal non-coherent
BFSK (ON- BFSK) scheme has the largest BER. As a result,
BPSK has the best activity recognition performance, while
ON-BFSK performs the worst. Meanwhile, similar to the result
in Fig. 10 (a), the recognition accuracy improves with the
increase of transmit power. When transmit power arrives at 25
dBw, the recognition accuracies corresponding to ON-BFSK
and BPSK are 0.8560 and 0.8618, respectively, which are
believed to be acceptable.

Data amount comparison before and after semantic en-
coding. Let the transmitter upload data 12 times per second7,
then the data amount of the original CSI, CSI power, and
semantic encoded data is illustrated in Fig. 10. (c), where,
for example, S-FL refers to the semantic encoding of falling
data. As can be seen, the average amount of data uploaded
each time after semantic encoding is approximately 27.87%
of that before encoding, demonstrating the proposed semantic
encoding algorithm can greatly reduce the amount of data
while ensuring the system performance. This creates excellent
space for further establishing the incentive mechanism to
promote data uploading. Besides that, the amount of encoded
data corresponding to different activities is different. This is
understandable, since the part of the body which caused main
reflections is different for various activities. For instance, dur-
ing walking the arms and legs reflect a large number of signals
in addition to the torso, while for sitting down the reflections
are mainly caused by torso. Therefore, different numbers of
semantic bases are needed to encode data corresponding to
various activities, leading to differences in the amount of
encoded data.

The effects of the semantic method and the award setting
schemes. We consider the case where there are three risk
neutral transmitters and two awards are set in the contest.
For a comprehensive analysis, six award setting schemes are
compared, i.e., the ratios of the first award and total award are
0.5, . . ., 1. Besides that, some other parameter configurations
are shown in Table II, where the processing time and the
number of bits are obtained from real-world experiments, and
the data rate values are typical in wireless networks [48].

7According to [47], the channel coherence time in an indoor environment is
around 84 ms and 600× 0.084 ≈ 50. Therefore, with a packet transmission
rate of 600 Hz, we can assume that the transmitter uploads data 12 times per
second, i.e., uploads every 50 data packets are collected.

Hf = H0,1:1,2;1,1
1,1:3,3;1,1

an (TS + T
(S)
P + DS

∆

)
∆TS+∆T

(S)
P

−∆
an

∣∣∣∣∣∣ (m−NT ; 1, 1) : (0, 1) (m−NT − 1; 1) (m, 1) ; (2−NT , 1)
(m−NT − 1; 1, 1) : (0, 1) (−1, 1) (m−NT , 1) ; (0, 1)

 (23)
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Fig. 8. The test scenario and hardware equipment.

TABLE II
NETWORK PARAMETERS FOR 3 TRANSMITTERS.

Parameters
1st

trans-
mitter

2nd

trans-
mitter

3rd

trans-
mitter

Time to obtain the semantic
basis, TS

9.797 ms

Time to perform activity
recognition, MU

5 ms

Estimated maximum data rate,
∆

8 Mbps

Real data rate, Cn 7 Mbps 6 Mbps 5 Mbps
Number of bits generated in

once sensing, D 96000

Number of bits of semantic
bases in once sensing, DS

7200

Figure 11 (a)-(c) shows the efforts of three transmitters
when the semantic encoding is used or not. From the results,
one can observe that the use of semantic encoding motivates
transmitters to upload sensing data under all award schemes
in the contest. The reason is that the data amount of semantic
features is much smaller than that of the raw sensing data,
making the transmitter using semantic encoding has lower
cost and higher capability. Therefore, under the same expected
award, each transmitter is willing to put in more effort to win
the contest. Another interesting insight from Fig. 11 (d) is
that the sum of three transmitters’ upload frequencies achieves
the maximum when the total award is set as the only first
prize. This result demonstrates our Theorem 2. Compared with
the uniform allocation scheme, the optimal award allocation
strategy can increase the sum of uploading frequency by
27.47%.

The effects of the risk appetite and the award setting.
Since the optimal award scheme is related to the transmitters’
risk appetite, here we further discuss the case where transmit-
ter is risk averse. From (18), one can observe that the greater
the expected award, the more willing transmitters are to put
effort in the contest. In Fig. 12, we show the awards that
transmitters expect to receive under different award scheme
settings and risk appetites. Again, there are three transmitters
and three awards. The parameters related to transmitters are
shown in Table II. Three different award setting schemes
are considered, i.e., all awards were allocated to the first
prize (Theorem 2), and the awards are divided equally by
three prizes, and awards are allocated following Theorem 3.

When transmitters are risk neutral, we can see that reducing
the proportion of first prize awards results in a significant
reduction, i.e., 22%, in the expected award of the most able
transmitter. Although the expected awards for the remaining
participants increase, the total expected award for the three
transmitters decreases slightly. However, when transmitters are
risk averse, our derived optimal award setting scheme, i.e.,
Theorem 3, brings only a slight decrease in the expected award
for the most capable transmitter, i.e., 7%, compared to the
optimal award setting scheme when the user is risk neutral.
However, the expected awards of the rest of the participants
increase obviously. Finally, the total expected award can be
increased by 20%.

VI. CONCLUSION

A semantic aware transmission framework has been pro-
posed in this paper, for transforming and transmitting sensing
data from the physical world to MSP in Metaverse. Two
breakthroughs lie in paper are semantically aware sensing
data transmission and the contest theory based incentive
mechanism, respectively. We have proposed the first semantic
encoding algorithm for sensing data, reducing the amount of
data significantly and lowering the storage and transmission
costs, while ensuring the performance of MSP in Metaverse.
In addition, we have established a contest-based incentive
mechanism to boost all transmitters’ data uploading frequency
by setting rewards, which provides stronger support for MSP
to enhance its QoS. The results show that the average data
amount after semantic encoding is only 27.87% of the original
sensing data and the data uploading frequency is increased by
27.47% with the help of proposed incentive mechanism. For
future work will be extended to semantic aware transmission
of other sensing information.

APPENDIX A
PROOF OF LEMMA 1

The transmitter maximizes the expectation of utility by ad-
justing its effort. Thus, the optimal effort of the nth transmitter,
i.e., f∗n, satisfies the following conditions:

∂E [π (an, fn)]

∂fn

∣∣∣∣
fn=f∗

n

= 0

∂2E [π (an, fn)]

∂f2
n

∣∣∣∣
fn=f∗

n

< 0

(A-1)

Substituting (18) and (19) into (A-1), we have R (fn) satisfies

∂R (f∗n)

∂f∗n
=
∂Cn (an, f

∗
n)

∂f∗n
=

1

an
(A-2)

and
∂2R (f∗n)

∂f∗n
2 < 0. (A-3)

Since f∗n is a function of an and rn, we take the partial deriva-
tive of (A-2) with respect to f∗n to obtain ∂2R(f∗

n)
∂f∗

n
2 = −1

a2
n

∂an
∂f∗

n
.

With the help of (A-3), we have ∂f∗
n

∂an
> 0, which means that,

under the optimal effort strategy, the more capable transmitter
exerts more effort. The proof is completed.
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Fig. 9. The activity recognition accuracy in the 3D semantic space.
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Fig. 10. The impact of wireless transmission on recognition accuracy and the data amount comparison before and after semantic encoding.
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Fig. 11. The efforts of three risk neutral transmitters when the semantic methods are used or not, under six different award setting schemes.

APPENDIX B
PROOF OF LEMMA 2

The CDF of Cn can be expressed as

FCn (x) =

{
x
∆ , (∆ > x > 0)
0.

(B-1)

According to (16), we have Cn = DS
1

an
−TS−T (S)

P

. Thus,

the CDF of an can be expressed as Fan (y) =

FCn

(
yDS

1−yTS−yT (S)
P

)
. Substituting (B-1) into Fan (y), we can

obtain (20) to complete the proof.

APPENDIX C
PROOF OF THEOREM 1

Taking the derivative of ∂R (an) with respect to an, we
obtain ∂R(an)

∂an
= ∂R(an)

∂f∗
n

∂f∗
n

∂an
= 1

an

∂f∗
n

∂an
. Therefore, the optimal

effort can be expressed as

f∗n = anR (an)−
∫ an

0

R (y) dy︸ ︷︷ ︸
I

. (C-1)

Substituting (19) and (20) into I , we have

I =

NA∑
m=1

u (rm)

∆NT−1

(
NT − 1
m− 1

)
∫ an

0

(yDS)
NT−m

(
∆−

(
∆TS+∆T

(S)
P +DS

)
y
)m−1

(
1− ∆TS+∆T

(S)
P

∆ y

)NT−1
dy.

(C-2)
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Fig. 12. The expected awards of transmitters under different award scheme
settings and risk appetites.

Note that the integral in (C-2) is difficult to solve directly.
To obtain the close-form solution of I , we perform an H-
transformation [49, eq. (2.9.6)] of the numerator as follows:

(yDS)
NT−m

(
∆−

(
∆TS + ∆T

(S)
P +DS

)
y
)m−1

= DS
NT−m∆m−1

(
TS + T

(S)
P +

DS

∆

)m−NT

×H1,0
1,1

((
TS + T

(S)
P +

DS

∆

)
y

∣∣∣∣ (NT , 1)
(NT −m, 1)

)
=

∆m−1

2πi(yDS)
m−NT

∫
L

Γ(−t)
Γ(m− t)

((
TS + T

(S)
P +

DS

∆

)
y

)t
dt,

(C-3)

where i =
√
−1, L is the right loop integral path starting

at the point −0.1i +∞, terminating at the point 0.1i +∞,
and intersecting the x-axis at (xs,0), where 0 > xs > −1.
Substituting (C-3) into I , we have

I =

NA∑
m=1

u (rm)

(
NT − 1
m− 1

)(
DS

∆

)NT−m 1

2πi

×
∫
L

Γ(−t)
Γ(m− t)

((
TS + T

(S)
P +

DS

∆

))t
I2dt, (C-4)

where I2 =
∫ an

0
yNT −m+t(

1−
∆TS+∆T

(S)
P

∆ y

)NT −1 dy. With the help of

[43, eq. (3.194.1)] and [43, eq. (9.113)], I2 can be solved.
Substituting I2 into I , we obtain (22) to finish the proof. The
Fox’s H-function in (22) can be calculated efficiently using a
Python implementation [50].

APPENDIX D
PROOF OF THEOREM 2

The Lagrangian function associated with problem (24) is
given by

FL =−
NT∑
n=1

NA∑
m=1

rmF
(
an, NT ,m,DS , TS , T

(S)
P ,∆

)
− λ

(
NA∑
m=1

rm − r

)
, (D-1)

where λ is the Lagrange multipliers. The
Karush–Kuhn–Tucker (KKT) optimality conditions for
the optimal solution are

NA∑
m=1

rm = r

NT∑
n=1

F
(
an, NT ,m,DS , TS , T

(S)
P ,∆

)
= λ,∀m.

(D-2)

Note that if m1 6= m2, we have
NT∑
n=1

F
(
an, NT ,m1, DS , TS , T

(S)
P ,∆

)
6=

NT∑
n=1

F
(
an, NT ,m2, DS , TS , T

(S)
P ,∆

)
. (D-3)

Thus, the second condition in (D-2) is only correct when
NA = 1. Then, using the first condition, we obtain that r1 = r,
which completes the proof.

APPENDIX E
PROOF OF THEOREM 3

When the transmitters are risk averse, the Lagrangian func-
tion can be expressed as

FL =−
NT∑
n=1

NA∑
m=1

ln rmF
(
an, NT ,m,DS , TS , T

(S)
P ,∆

)
− λ

(
NA∑
m=1

rm − r

)
. (E-1)

The KKT conditions then can be written as
NT∑
n=1

1
rm
F
(
an, NT ,m,DS , TS , T

(S)
P ,∆

)
= λ,∀m

NA∑
m=1

rm = r.

(E-2)

By solving (E-2), we have

1

λ

NT∑
n=1

F
(
an, NT ,m,DS , TS , T

(S)
P ,∆

)
= rm, (E-3)

and

λ =
1

r

NA∑
m=1

NT∑
n=1

F
(
an, NT ,m,DS , TS , T

(S)
P ,∆

)
. (E-4)

Substituting (E-4) into (E-3), we can derive (26) to complete
the proof.
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